

DANDY TRAIL SITE FEH MITIGATION ALONG EAGLE CREEK

Prepared for:

Indiana University and the Indiana Office of Community and Rural Affairs (OCRA) in Support of the Development of the Indiana Fluvial Erosion Hazard Mitigation Manual, an Indiana Silver Jackets Initiative

October 2018

Prepared by:

Christopher B. Burke Engineering, LLC 115 West Washington Street, Suite 1368 South Indianapolis, Indiana 46204

CBBEL Project No. 14-0014.00000

Table of Contents

	<u>Page</u>
Table of Contents	i
Executive Summary	iii
Chapter 1 Project Overview. 1.1 Introduction 1.2 Project History 1.3 Project Purpose 1.4 Analysis Process.	1 1 2 2
Chapter 2 Data Gathering	3
2.1 Sources of Data2.2 Previous Studies	3 4
Chapter 3 FEH Mitigation Study	5 6 6 10 12
Chapter 4 Stakeholder Input and Mitigation Objectives	13
4.1 Decision Making Process	
4.2 Prioritized Mitigation Objectives & Performance Metrics	
Chapter 5 Passive Management Considerations	15
Chapter 6 Active River Management Analysis	16
6.2 Lateral Stability Considerations	
6.3 Proposed Mitigation Measures	17
Chapter 7 Recommendations	20
7.2 Improvement Implementation	
7.3 Next Steps	
Chapter 8 References	21

List of Tables and Figures

Table 1: Comparison of Observed Channel Properties with Regional Curves Table 2: Risk Level Criteria	. 7 . 8
Table 3: Identification of Fluvial Erosion Hazards	. 8
Table 4: Triple Bottom Line Comparison of Improvement Alternatives	17
Figure 1: Stream Bank Along Eagle Creek Levee	. 1
Figure 2: Failed Streambank above Revetment at FEH Site	. 2
Figure 3: Preliminary Assessment Reach	. 5
Figure 4: Controlled vs. Natural Flow	. 6
Figure 5: Eagle Creek Dam	. 7
Figure 6: Locations of At-Risk Infrastructure	. 9
Figure 7: Overflow Path near FEH Site	10
Figure 8: Toe Protection Measures	16
Figure 9: Armored Channel in Indianapolis, IN	17

List of Exhibits

- Exhibit 1 Study Area Map
- Exhibit 2 Topographic Map of Eagle Creek Watershed

Exhibit 3 – Map of Unstable Slopes

Exhibit 4 – Levee Conceptual Improvements

List of Appendices

Appendix 1: Site Observation Photographs

Appendix 2: Site Assessment Data & Calculations

- Appendix 3: Watershed-scale Assessment Data & Calculations
- Appendix 4: Reach-scale Assessment Data & Calculations

Appendix 5: Triple Bottom Line and Cost Estimate Calculations

EXECUTIVE SUMMARY

This report documents the results and methodology used by Christopher B. Burke Engineering, LLC (CBBEL) to characterize an existing fluvial erosion hazard (FEH) at a site on the waterside toe of Levee 12(c), along Eagle Creek downstream of Dandy Trail in Indianapolis, Indiana. This study and preparation of this document was conducted in support of the development of the Indiana Fluvial Erosion Hazard Mitigation Manual, which was an initiative of the Indiana Silver Jackets, made possible through a grant from the Indiana Office of Community and Rural Affairs (OCRA). A FEH mitigation study approach was used to identify the stressors leading to channel instability issues to aide in the development of conceptual mitigation solutions.

Eagle Creek is a tributary to the West Fork White River; the watershed extends into Boone, Hamilton, Hendricks, and Marion Counties and includes portions of Brownsburg, Carmel, Indianapolis, Lebanon, Westfield, Whitestown, and Zionsville. Approximately 162 square miles of the 210.6 square mile total drainage area contributes to Eagle Creek Reservoir.

A system assessment of Eagle Creek was completed by CBBEL to identify the root causes of the erosion that occurs near the toe of Eagle Creek Levee 12 [EC-12(c)], approximately 1.1 miles downstream of the Eagle Creek Dam. The system assessment included review of previous studies and analysis of available data that was focused primarily on EC-12(c). The system assessment determined that two major factors are most responsible for the current erosion and bank failure issues.

- 1. Artificial hydrology and sediment barrier caused by Eagle Creek Dam: Dam controlled artificial hydrology subjects the channel to prolonged erosive flows that would naturally tend to destabilize a channel. The presence of the dam also creates a severe discontinuity in sediment transport.
- 2. Channel incision and inadequate floodplain connectivity: Confinement of the flow in the channel and the lost floodplain connectivity results in significant erosion risk.

The results of the FEH mitigation study suggest that the issues that led to the instability are likely to persist and that a site-specific improvement should be made to stabilize the levee, since the levee serves as critical infrastructure to Indianapolis. The recommended improvements include: reinforcing the toe of the bank, adjusting the upper portion of the bank to provide a stable slope, and protecting the upper slope with erosion control blanket. These improvements are expected to cost approximately \$374,000 to implement. Once the improvements have been constructed, the condition of the reconstructed bank at the FEH site should be monitored on an annual basis, and/or after significant flooding events.

CHAPTER 1 PROJECT OVERVIEW

1.1 INTRODUCTION

This report documents the results and methodology used by Christopher B. Burke Engineering, LLC (CBBEL) to identify the need and ability to mitigate an existing fluvial erosion hazard (FEH) along the waterside toe of Levee 12(c) along Eagle Creek just downstream of Dandy Trail in Indianapolis, Indiana. This study and preparation of this document was conducted in support of the development of the Indiana Fluvial Erosion Hazard Mitigation Manual. The development of the Manual was an initiative of the Indiana Silver Jackets, made possible through a grant from the Indiana Office of Community and Rural Affairs (OCRA). A system-based approach was used to identify the stressors leading to channel instability issues to aide in the development of conceptual mitigation solutions.

1.2 PROJECT HISTORY

Eagle Creek is a tributary to the West Fork White River, with a drainage area of 210.6 square-miles (mi²). Eagle Creek begins in Hamilton County, and flows south through Boone and Marion Counties to its confluence with the West Fork White River on the west side of Indianapolis, Indiana. The watershed includes several significant

Figure 1: Stream Bank Along Eagle Creek Levee

upstream tributaries such as Little Eagle Creek (Hamilton County), Mounts Run, Fishback Creek, Little Eagle Creek (Marion County), and School Branch. In addition to Hamilton, Boone, and Marion Counties, the Eagle Creek Watershed also extends west into Hendricks County. Portions of Westfield, Carmel, Zionsville, Whitestown, Lebanon, Brownsburg, and Indianapolis are included in the watershed. Approximately 162 mi² of the total drainage area contributes to Eagle Creek Reservoir.

The portion of Eagle Creek and the tributary streams upstream of Eagle Creek reservoir flow through largely agricultural areas. The river corridor transitions to an urban setting near the Hamilton-Marion County border. Downstream of Eagle Creek Reservoir, much of Eagle Creek is leveed.

A map of the study area is shown in **Exhibit 1**.

1.3 PROJECT PURPOSE

The purpose of the study is to determine the most appropriate repair methods for an existing slope failure and a means of reducing the risk of future damage to the existing levee in Indianapolis, Indiana due to erosion in Eagle Creek. A better understanding of Eagle Creek is required to determine the current characteristics the of

Figure 2: Failed Streambank above Revetment at FEH Site

channel and watershed, to identify the root causes of the channel instability, and to determine what, if any, mitigation strategies are warranted, applicable, and able to be implemented without detrimental impact to adjacent stream reaches.

1.4 ANALYSIS PROCESS

The project was completed in several successive phases. Phase I of the project included a significant data gathering effort. The information acquired during the data collection phase included local testimony collected during an initial stakeholders meeting, previous studies, observations from site visits, historical aerial photography, streamflow data, rainfall data, soils information, and land use data.

The second phase of the project consisted of the assimilation and processing of the data collected during Phase I to determine the major themes of the current morphologic condition of the river system affecting the site. The processed data were then used to identify the watershed- and local-scale stressors acting on the river system.

Phase III involved the development of conceptual solutions for the stressors identified in Phase II of the project. An implementation sequence of the recommended strategies was also developed during this portion of the work.

CHAPTER 2 DATA GATHERING

Existing data and previous studies, where available, were used as supporting information for the FEH mitigation study. Additional data and observations were collected to provide a more comprehensive understanding of the physical processes at work within the river system. The following sections detail the origin and use of existing datasets and applicable previous studies, as well as the type and extent of additional information gathered.

2.1 SOURCES OF DATA

Topography Data

The analysis of the Eagle Creek corridor and watershed required detailed topographic information for various calculations. The 2011 IndianaMap Digital Elevation Model (DEM) was used as the source of topographic data for bankfull width approximation, floodplain connectivity considerations, and as the terrain source for a two-dimensional hydraulic model. The IndianaMap DEM covers the entire Eagle Creek Watershed with a 5-foot cell resolution, which is sufficient for producing 1-foot contours. A limited site survey was completed by SJCA on September 6, 2018 to provide more accurate topographic data of the FEH site, support the determination of the channel classification, and confirm the accuracy of the 2011 DEM. A topographic map of the Eagle Creek Watershed is provided in **Exhibit 2**.

Streamflow Data

Streamflow information served as a critical component to the hydrologic analysis completed as a part of this study. All streamflow information was obtained from the United States Geological Survey's (USGS) online portal.

Aerial Photography

Aerial photography of the Eagle Creek Watershed was obtained from multiple sources. The primary source of aerial photography information was the 2011 IndianaMap Orthophotography.

2.2 PREVIOUS STUDIES

The review of previous studies in the Eagle Creek Watershed was limited to hydrologic and hydraulic analyses, as well as a small number of other reports of significance to fluvial stability and flooding considerations.

Regional Bankfull Channel Dimensions of Non-Urban Wadeable Streams in Indiana (USGS, 2013)

Regionally-based relationships for channel dimensions were developed by analyzing data from streams throughout Indiana. The data was obtained from 81 streams that are non-urban, wadeable, and pristine or naturalized. The regional equations can be used to determine a channels departure from the expected dimensions as well as to aid in channel restoration design processes.

Geotechnical Investigation, City of Indianapolis PAL Levee Accreditation Project, Levee EC-12(c) (CTL Engineering, 2011)

A geotechnical analysis of Eagle Creek Levee 12(c) was completed by CTL Engineering in 2011 in support of levee accreditation efforts, in addition to providing design recommendations for repairing a portion of the levee. The repaired levee segment is coincident with the FEH of interest. The analysis included consideration of slope stability at three locations. The soil profiles at the three locations varied, with the slope stability analysis determining that two of the slopes were stable and the final location was unstable during several of the conditions considered.

CHAPTER 3 FEH MITIGATION STUDY

The FEH mitigation study included consideration of the findings of previous studies, an extensive site investigation, and the contributing watershed area to the main stem of Eagle Creek. The FEH mitigation study was broken into three major categories of observations and analysis, including site assessment, watershed-scale assessment, and reach-scale assessment. The following paragraphs provide an overview of each component of the FEH mitigation study.

3.1 IDENTIFICATION OF ASSESSMENT REACH

The preliminary identification of an assessment reach is necessary to determine the extent of the stream that will be evaluated during the site assessment, to establish the portion of the overall watershed that should be considered during the watershed-scale assessment, and to provide an initial estimate of the extent of the reach-scale assessment.

A prudent assessment reach is centered on the FEH location and extends a minimum of 12 bankfull widths in the upstream and downstream direction. The anticipated bankfull width of Eagle Creek at the location of the FEH was determined by applying the contributing drainage area at that point in the stream (164 mi²) to the regional bankfull equations for the Central Till Plain in Indiana. An approximate bankfull width of 96 feet was determined. The preliminary assessment reach identified for the FEH site is shown in Figure 3.

Figure 3: Preliminary Assessment Reach

3.2 SITE ASSESSMENT

A site visit was conducted on September 6, 2018 to observe the river corridor along the preliminary assessment reach to determine the characteristics of the channel and to help identify the physical processes occurring in the channel. The site observations focused on measuring key dimensions of the channel and locating signs of morphological change, or changes in the channel, such as scoured and/or failed streambanks, significant upland erosion, and sediment deposition. A significant amount of riprap armoring was noted along the lower portion of the streambank.

Observations and representative measurements were made to allow for the assessment reach to be classified and to provide information that can be evaluated to determine if the channel should be expected to be relatively stable or unstable. Photographs taken during the site assessment are provided in Appendix 1.

Downstream of the dam, Eagle Creek is a B4c stream according to Rosgen Classification of Natural Rivers based on the field measurements. A B4c stream is a moderately entrenched stream with moderate sinuosity, gentle slope, and gravel streambed. A copy of the field measurements and stream classification form is provided in Appendix 2.

3.3 WATERSHED-SCALE ASSESSMENT

Typically, an evaluation of the contributing watershed would be necessary to determine if there are systemic issues contributing to the instability noted at the FEH site. The fact that the FEH site exists downstream of Eagle Creek Dam indicates that systemic issues exist, as the dam disrupts the natural conveyance of flow and sediment. Rather than seeking to determine the potential causes of observed changes at the site, the watershed assessment was used to quickly evaluate the severity of the systemic issues caused by the dam and to identify the infrastructure at risk from the anticipated fluvial instability.

3.3.1 Artificial Hydrology and Sediment Barrier caused by Eagle Creek Dam

Eagle Creek Dam effectively controls the hydrology for the assessment reach. The dam operates based on standard procedures that contain a limited number of possible outflow 'settings'. These discrete 'settings' do not allow the downstream channel to experience the continuous, natural, rainfall-driven inputs from the watershed. The downstream channel is subjected to abrupt changes in flow; the flows do not meaningfully increase or decrease, but rather create elongated flow 'stair-steps'. This artificial hydrology subjects the channel to prolonged erosive flows that would naturally tend to destabilize a channel.

The presence of the dam also creates a severe discontinuity in sediment transport. All but the finest of the sediment that is suspended in the water column of Eagle Creek Reservoir settles to the bottom of the waterbody. This creates a tremendous imbalance

in the sediment capacity and sediment supplied to the reach immediately downstream of the dam and leaves the sediment capacity to be harvested from the channel bed and banks to reestablish the balance. This is often referred to as the stream being 'hungry', as the bed and banks are rapidly eaten away in unarmored channels.

Figure 5: Eagle Creek Dam

3.3.2 Comparison of Channel Dimensions to Regional Curves

The artificial flow regime caused by the dam is expected to result in significant departure from the anticipated channel dimensions using the bankfull regional curves. The apparent bankfull width of the channel was determined at 30 locations along Eagle Creek to understand the magnitude of the departure. The measurements were made using the IndianaMap DEM to determine the channel geometry. The method used is expected to produce slightly wider bankfull widths than would likely be observed if field measurements were taken; despite this inherent exaggeration, the values shown in Table 1 indicate that the bankfull channel is much narrower than the prediction using regional curves at every location. This is not unexpected since much of the channel has been leveed and flowrates are controlled by Eagle Creek Dam, preventing the channel from developing a form similar to the natural streams used to create the regional curves. A map of the measurement locations is provided in Appendix 3.

Distance Downstream from Eagle Ck Dam (mi)	Drainage Area (sq. mi.)	Approximate Bankfull Width [*] (ft)	Predicted Bankfull Width ^{**} (ft)	Departure from Expected Bankfull Width (ft [%])
0.3	162.0	50	96	-46 ft [-48%]
0.9	164.0	35	96	-61 ft [-64%]
2.0	166.0	75	97	-22 ft [-23%]
3.1	170.0	30	98	-68 ft [-69%]
3.9	173.0	75	98	-23 ft [-24%]
4.9	174.0	65	98	-33 ft [-34%]
6.0	175.0	70	99	-29 ft [-29%]
6.7	177.0	35	99	-64 ft [-65%]
8.1	208.0	40	104	-64 ft [-62%]
8.9	209.0	50	104	-54 ft [-52%]
10.0	210.0	45	105	-60 ft [-57%]
10.9	210.0	35	105	-70 ft [-67%]

Table 1: Comparison of Observed Channel Properties with Regional Curves

3.3.3 Identification of At-Risk Infrastructure

The fluvial erosion hazard corridor along Eagle Creek near the FEH site was used to establish the at-risk area where infrastructure would need to be evaluated. Each location within the assessment reach where significant infrastructure was located within the corridor was examined to determine the perceived risk level given the anticipated detrimental impact if the infrastructure was compromised. The risk level was determined according to the criteria in Table 2. Table 3 provides a summary of the at-risk infrastructure identified during the assessment, including the risk level and contributing factors; Figure 6 provides a map of the locations of the at-risk infrastructure.

Risk Level	Stability Level	Impact to Public if Infrastructure is Compromised
	Unstable	Minor Disruption \rightarrow Severe risk to public health or loss of critical infrastructure
High	Recently Stable / Transitional	Moderate Disruption → Severe risk to public health or loss of critical infrastructure
	Stable	Severe risk to public health or loss of critical infrastructure
	Unstable	Minor Disruption → Significant disturbance to daily commute/activities
Moderate	Recently Stable / Transitional	Moderate Disruption → Significant disturbance to daily commute/activities
	Stable	Significant disturbance to daily commute/activities
	Unstable	No disruption \rightarrow Minor disruption to localized areas
Low	Recently Stable /	No disruption \rightarrow Minor disruption to localized areas
LOW	Transitional	
	Stable	Minor disruption to localized areas

Table 2: Risk Level Criteria

Table 3: Identification of Fluvial Erosion Hazards

Location	FEH Description	Impact of Compromised Infrastructure	Risk Level
EC-1	Levee	Severe risk to loss of critical infrastructure	High
EC-2	Powerline	Potential disruption of power	Low*
EC-3	Powerline	Potential disruption of power	Low*
EC-4	Road (Island Club Drive)	Minor disruption to localized area	Low
EC-5	Structure	Potential loss of life and homes	High
EC-6	Structure	Potential loss of life and homes	High
EC-7	Structure	Potential loss of life and homes	High
EC-8	Structure	Potential loss of life and homes	High
EC-9	Structure	Potential loss of life and homes	High
EC-10	Structure	Potential loss of life and homes	High

* The risk level would typically be classified as Moderate; however, since the powerline structure is on the levee, a critical piece of infrastructure, it is unlikely that the slope will be allowed to fail to the degree that it would impact the powerlines.

Figure 6: Locations of At-Risk Infrastructure

3.4 REACH-SCALE ASSESSMENT

A more detailed evaluation of the assessment reach was completed to quantify the parameters needed to develop conceptual active management solutions. The analyses were also used to further improve the understanding of the local system. The following paragraphs summarize the additional analyses completed for the reach-scale assessment.

3.4.1 Refined Assessment Reach

The preliminary assessment reach extent was evaluated to determine if the detailed analyses should cover the entirety of the reach or if analysis and evaluation efforts could be limited to a smaller area. The full extent of the preliminary reach was determined to be necessary as a result of the overflow path in the right overbank area. Some of the analyses completed considered areas beyond the refined assessment reach but did so only to reduce the influence of assumptions and selected boundary conditions for the hydraulic model.

3.4.2 Hydraulic Analysis

A two-dimensional hydraulic model was developed for the refined assessment reach to determine the speed and direction of flow in the channel near the levee. The design of alluvial channels requires the determination of the channel forming discharge; however, Eagle Creek does not function as an alluvial stream. The portion of Eagle Creek in the assessment reach functions as a threshold channel due to the manipulation of flow and removal of sediment load caused by Eagle Creek Dam, as well as the addition of

significant amounts of riprap armoring in the downstream channel.

The hydraulic model was configured to consider flows that ranged from baseflow conditions up to the 100-year flow event determine what to improvements may be necessary to reestablish the adequacy of the channel armoring, which is necessary to maintain the shape and stability of the threshold channel. Additional information concerning the hydraulic model is provided in Appendix 4.

Figure 7: Overflow Path near FEH Site

The results from the hydraulic model indicate that the maximum flow velocity in the refined assessment reach ranges from 5 to 9 feet per second (ft/s) for the flows considered. During events larger than the 1.5-year, the hydraulic model indicates that

the flow leaves the channel just upstream of the site of interest. The velocities through the overflow path range from 4 to 7 ft/s for events up to the 100-year flow. Flow moving as swiftly as the flow in both locations is capable of causing bank scour and preventing the establishment of vegetation. Bank scour and a lack of vegetation can initiate bank instability.

It should be noted that the maximum velocity in the main channel does not occur during the most extreme event. The highest velocity occurs in the channel just prior to when the overflow path is activated. This provides a clear example of the benefit that a floodplain can provide in terms of energy dissipation. Unfortunately, the floodplain at this location in Eagle Creek is not attached to the channel at an appropriate depth, which allows erosive flows to occur prior to the energy-dissipating activation of the overflow path.

3.4.3 Scour Evaluation

The results of the hydraulic model were used to compute general scour and bend scour at the FEH site. The general scour calculations were completed using the Blodgett and Pemberton and Lara methods. The results of the analyses show that scour depths near the FEH site are expected to range from 2 to 9 feet for general scour. Long-term channel degradation is not accounted for in the above-mentioned scour depths. Scour calculations are provided in Appendix 4.

3.4.4 Slope Stability Analysis

The 2011 CTL Geotechnical Investigation included a slope stability analysis of three locations along Levee EC-12(c). The soil profiles for each location varied; however, the calculated factors of safety are well-correlated with the slope of the bank. The results of the analysis suggest that slopes 2.5 feet horizontal to 1 foot vertical (2.5H:1V) or flatter are acceptably stable and slopes that are 1.2H:1V or steeper are unstable. The low factor of safety (0.882) for the 1.2H:1V slope suggests that slopes slightly flatter than 1.2H:1V are also unstable. It should be noted that the unstable location from the CTL analysis corresponds to the FEH of interest.

An analysis of the land slope within the refined assessment reach was evaluated to determine the location and extent of banks that have either failed or should be considered unstable. Slopes of 2.5H:1V and flatter were considered stable, slopes between 2.5H:1V and 1.7H:1V were considered marginally stable, and slopes steeper than 1.7H:1V were considered unstable. **Exhibit 3** provides a map of the estimated slope stability proximate to the channel. A significant portion of the channel banks within the project reach are expected to be marginally stable; approximately 500 feet of the channel bank at the FEH location has either failed or is expected to be unstable.

3.5 KEY FINDINGS OF FEH MITIGATION STUDY

The most significant factors affecting the stability of the channel through the assessment reach identified during the FEH mitigation study are described in the following paragraphs. All of the stressors identified have interplay with at least one of the other stressors, creating a compounding effect that reduces the overall stability of the river.

Eagle Creek Dam & Threshold Channel Conditions

As discussed in Section 3.3.1, Eagle Creek Dam prevents the natural delivery of flow and sediment to the assessment reach. The operation of the dam results in elevated, elongated, and 'clear water' flows that result in the stream being unstable without armoring.

Much of the channel has been armored with riprap. The areas where the riprap appears to be of inadequate size or depth have eroded, and in many cases become unstable.

Channel Incision & Inadequate Floodplain Connectivity

The human-imposed narrowness of the main channel confines the flow, preventing meaningful floodplain storage at or above a bankfull event. In healthy streams, the channel is well-connected to a substantial floodplain that helps to store excess flow and sediment, as well as to reduce the overall erosive energy in the flow.

CHAPTER 4 STAKEHOLDER INPUT AND MITIGATION OBJECTIVES

The identification of the overall mitigation objectives is critical to the development of mitigation strategies and the success of the project. Establishing a clear decision-making process, evaluating the impairments to be addressed, and considering the potential improvements using a merit-based system is imperative to a prudent design. It is also important to identify what will constitute 'project success'. These factors should be considered by appropriate stakeholders.

4.1 DECISION MAKING PROCESS

The decision to proceed with a design of mitigation features will ultimately lie with the City of Indianapolis. The conceptual improvements identified later in Chapters 5 and 6 were determined by the designer using the objectives noted below with consideration of the impairments to be mitigated and the likelihood of mitigation success.

4.2 MITIGATION OBJECTIVES

Conversations with City officials revealed concern over the long-term viability of the levee adjacent to Eagle Creek due to observations of streambank erosion. The following objectives were implied:

- 1. Prevent the stream from compromising the toe of the levee and minimize the longterm FEH risk
- 2. Low maintenance need for improvements
- 3. Cost efficient construction

4.2.1 Impairments to be Mitigated

The FEH site has several impairments that must be considered to meet the mitigation objectives. The impairments are both local instabilities and systemic issues affecting the channel downstream of the dam. The following issues must be addressed by the design:

- 1. High flow velocities and scour through the assessment reach
- 2. Bank instability at the site, largely attributable to over-steepened slopes
- 3. Prolonged erosive flow rates due to increased runoff volume and artificial hydrology

4.2.2 Functional Lift

The relatively small extent of the FEH of interest and the limited scope of the objectives for the project reduce the potential for providing function lift to the stream reach.

The severe systemic issues imposed by Eagle Creek Reservoir and Dam cannot be alleviated without removal of the facility and the reestablishment of a natural river corridor, both of which are impracticable. Without significant naturalization, localized FEH mitigation measures should not be expected to provide significant functional lift to the overall stream.

4.3 PRIORITIZED MITIGATION OBJECTIVES & PERFORMANCE METRICS

The mitigation objectives identified in Section 4.2 were provided in the order of priority that was understood from conversations with the City of Indianapolis. The specific mitigation objectives have been expanded in the list below and are accompanied by designer-specified performance objectives intended to achieve the stated objectives:

1. Prevent the stream from compromising the toe of the levee and minimize the long-term FEH risk:

This mitigation objective will require active management strategies to effectively stop erosion in the vicinity of the at-risk levee. Prudent performance metrics for the improvements near the area of interest include:

- A. Flow velocity during the 100-year event must be below the acceptable performance threshold of the surface cover/protection to prevent erosion during all but the most extreme of flow events.
- B. Flow vectors during the full range of flow events should be well aligned with the surface contouring inundated by and adjacent to the flow.
- C. Protect against long-term degradation.
- D. Mitigation measures implemented in and adjacent to the stream should consider the potential for the peak annual flow rate to continue to rise for the engineering life-span of the project, although expected at a lower rate of increase compared with an unregulated flow stream.

2. Low maintenance need for improvements

Low maintenance requirements hinge on the types of improvements designed and the types of materials selected. Maintenance need is heavily dependent on uncontrolled variables (e.g. severity and frequency of flooding, debris strikes, etc). As a result, performance metrics are limited to anticipated outcomes rather than results of detailed analyses:

- A. Maintenance activities should be required no more frequently than once, annually.
- B. Material selections should have a long (20+ year) life-span to reduce or prevent the need to replace components of the project.

3. Cost efficient construction

Minimizing the project implementation cost requires evaluation of materials and active management stabilization methods used. Though the overall cost of the improvements cannot be accurately predicted or determined prior to the selection of active management treatments, generalized goals can be established:

- A. A high project cost is anticipated due to the presence of the levee.
- B. The complexity of the design should be minimized to reduce installation costs and materials should be locally available and cost efficient.

CHAPTER 5 PASSIVE MANAGEMENT CONSIDERATIONS

Passive management strategies are most effective for addressing systemic issues that are watershed-based, or site-specific issues for a location that does not have a large contributing drainage area. That would seem to suggest that the use of passive management strategies is ideal for the mitigation of the FEH of interest; however, the majority of the systemic issues arise from the presence of Eagle Creek Dam. Furthermore, the benefit of watershed-scale measures will likely be dampened downstream of the Eagle Creek Reservoir. As a result, passive measures are not considered a viable solution for the FEH site.

CHAPTER 6 ACTIVE RIVER MANAGEMENT ANALYSIS

Active river management includes modifications to the stream corridor that directly combat or eliminate the instabilities that are present. Various types of active management strategies can be combined to create robust improvements to specific portions of the channel or the entire channel through a given reach. Active river management methods must address both vertical and lateral instability to be effective.

6.1 VERTICAL STABILITY CONSIDERATIONS

Improvements to the FEH mitigation site will need to address two potential sources of vertical instability: scour along the toe of the bank during significant flow events and the potential for long-term degradation or head-cutting caused by the imbalance in sediment supply and capacity.

Toe protection measures are typically necessary for FEH mitigation sites that have vertical or horizontal stability issues due to the fact that a bank is not likely to remain stable if the toe is eroded; this is particularly true for the FEH site due to the slope stability issues already present. Toe protection usually comes in the form of large stone, concrete, or wooden revetment that

Figure 8: Toe Protection Measures

is designed to be immobile, even during high flow events; sheet piling is sometimes used when the site is particularly confined. An example of riprap toe protection is shown in Figure 8. There is currently toe protection material in place at the site; however, the size, extent, and location may not be ideal.

Grade control structures and/or bed armoring are often used to prevent the process of channel degradation, or the gradual lowering of the channel invert elevation due to erosion downstream propagating upstream. Grade control structures can be made of large, immobile stone, concrete, or sheet piling and span the width of the channel to stop the upstream migration of a headcut.

6.2 LATERAL STABILITY CONSIDERATIONS

Failed, over-steepened, and undermined banks are unstable due to an inability to support the weight of the soil forming the bank. Where banks suffer from this type of geotechnical instability, a simple and cost-effective means of correcting the issue is to reduce the slope to a more stable angle, typically in the range of 3-feet horizontal to 1-foot vertical (3H:1V), or flatter.

Natural, healthy streams in Indiana typically meander and gradually move back and forth across their floodplain. In certain situations, such as this one, allowing the movement of the stream can endanger critical infrastructure. Utilizing an armoring system on the channel banks can help to prevent the natural erosion processes that allow the channel to move or change its shape in meaningful ways. Channel armoring is accomplished by installing a system that can withstand the flow velocity in the channel with negligible loss of bank and bed material over time: riprap. turf reinforcement mats. soil cement, etc. are examples of common armoring systems.

Figure 9: Armored Channel in Indianapolis, IN

6.3 PROPOSED MITIGATION MEASURES

The type of mitigation techniques used to improve the stability of a stream is dependent on the type of instability present in the channel. The reach of Eagle Creek exhibits various forms of instability, including bank scour, potential vertical instability, and minor lateral migration. The proposed mitigation techniques and the portions of the stream to which the strategies are applicable are discussed below.

6.3.1 Evaluation of and Selection of Improvement Alternatives

There are different treatment methods available to address the different types of instability presented at the mitigation site. For vertical instability, treatments that provide toe protection are the most applicable. These treatments include toe wood, interlocking concrete jacks, and gabion baskets. For lateral instability, treatments that provide channel armoring are the most applicable. These treatments include gabion baskets, soil lifts with live stakes, and erosion control blanket systems. Each of the three types of toe protection were considered in conjunction with soil lifts, live stakes, and erosion control blankets.

A triple bottom line comparison was completed for the three channel improvement alternatives to evaluate the economic costs, social benefits, and environmental benefits. A summary of the triple bottom line comparison is provided in Table 4. The complete triple bottom line decision matrix is included in Appendix 5.

Improvement Alternative	Economic Score	Social Score	Environmental Score	Total Score
Toe Wood	2.8	2.0	2.7	7.5
Interlocking Concrete Jacks	2.5	2.0	3.1	7.6
Gabion Wall	2.3	2.0	3.4	7.7

Table 4: Triple Bottom Line Comparison of Improvement Alternatives

Toe wood had the highest economic score because it was the least expensive and has moderate lifecycle cost in this application. Gabion baskets were the most expensive and have a moderate lifecycle cost. The interlocking concrete jacks have a low to moderate lifecycle cost but have a higher installation cost than toe wood.

All three treatment methods have the same potential social benefits score as they all provide a relatively similar level of service. The benefit of maintaining the integrity of the levee extends to a large number of properties and as a result provides a moderate to high level of benefit to public safety. However, none of the treatment methods are capable of improving flooding or drainage issues due to the extreme confinement of the channel. The project will also afford no meaningful improvement to quality of life.

The differentiating factor in the environmental scores relates to the permitability of the treatment methods, particularly with regard to meeting requirements for a certified levee. Toe wood is typically a very high performing treatment method with regard to environmental benefit; however, the permitability of toe wood as a part of a certified levee is doubtful. Adequately consolidating clayey material around the structure will likely be impossible and the infill materials will allow for a preferential seepage path to develop. These concerns caused toe wood to have the lowest environmental score. All the protection types provided a robust level of protection but did little to restore or protect the floodplain function of the stream because the limitations of the project resulting from the upstream dam and confined stream. The certainty in the quality of material consolidation and ease of installation is highest for gabion baskets, which resulted in the highest score due to the ease of permitability.

6.3.2 Description of Improvements

The proposed improvements include the use of riprap to reinforce the toe of the levee and reducing the over-steepened section of the streambank. Erosion control blankets will be used to prevent erosion above the riprap toe protection.

A schematic layout of the potential improvements is provided in **Exhibit 4**. As can be seen in the exhibit, significant impacts to the stream are required to install the treatments. It is anticipated that armoring the streambank would require the acquisition of the following environmental permits, at a minimum:

IDNR Construction in a Floodway

IDEM Section 401 Water Quality Certification

USACE Section 404 Dredge & Fill Permit

IDEM Rule 5 Permit

The recommended bank armoring detail, or any other stabilization method, should not be used indiscriminately along the channel to 'fix' the banks. The installation of bank armoring can result in increased erosion and instability downstream of the project that impacts adjacent properties. Strategic integration of the improvements into the stream corridor is paramount to project success.

The cost of designing, permitting, and constructing these improvements is expected to be approximately \$374,000. A detailed breakdown of the anticipated project cost is provided in Appendix 5.

6.3.3 Anticipated Performance

The improvements are expected the stabilize the streambank through the FEH site. Reinforcing the toe of the bank, adjusting the bank to provide a stable slope, and protecting the levee with erosion control blanket should provide sufficient resistance to erosion and prevent further instability. An evaluation of the mitigation objectives using the previously identified performance metrics is as follows:

1. Prevent the stream from compromising the toe of the levee and minimize the long-term FEH risk:

The anticipated maximum flow velocity is 9 ft/s in the channel and 7 ft/s in the overflow path. Class 1 riprap will be necessary to adequately armor the toe given the high channel velocity. Most erosion control blanket systems have a performance threshold of up to 9 ft/s in an unvegetated state. This performance metric is met, as both erosion prevention systems have adequate erosion resistance during the 100-year event.

The adjustment of the slope of the left channel bank helps to improve the direction of the flow vectors to be more well-aligned with the bank during the full range of flow events.

The FEH site is protected against long-term degradation by installing the toe protection measures to an adequate depth to resist scour.

2. Low maintenance need for improvements

Utilizing various forms of riprap protection at and below the ordinary high-water mark will minimize the need for maintenance at the toe of the slope. The use of gabion baskets does require monitoring and maintenance when the baskets begin to break down due to debris strikes or corrosion.

The use of mitigation measures that are only vegetative on the upper portion of the slope reduces the difficulty of the required maintenance activities; in fact, the grass species used in conjunction with the erosion control blankets can be selected such that they do not need to be mowed to maintain a vigorous stand.

The use of non-degradable erosion control blankets and vegetation as reinforcement reduce the likelihood that the system would need to be augmented or replaced.

3. Cost efficient construction

The overall project cost for the improvements is anticipated to be approximately \$262,000. The total length of stabilized streambank is 265 feet, resulting in a unit cost of \$600 per foot. The cost per foot is slightly inflated by the additional grading area not included in the length of stabilized streambank.

The proposed methods are common construction methods, cost efficient given the presence of the levee, and the materials are locally available.

CHAPTER 7 RECOMMENDATIONS

The results of the stream assessment described in Section 3.0 and the key factors influencing the stability of Eagle Creek described in Section 3.5 suggest that the issues are likely to persist and cannot be solved by correcting a problem in a specific location. However, the levee serves as critical infrastructure to Indianapolis, and should therefore be protected against damage from fluvial erosion. Monitoring the channel conditions at the FEH site will be a critical component to maintaining the integrity of the FEH mitigation along the levee.

7.1 MONITORING

Once the improvements have been constructed, the condition of the reconstructed bank at the FEH site should be monitored on an annual basis, and/or after significant flooding events. If the improvements are damaged or the embankment is threatened by stream migration, remedial action should be completed as soon as possible.

7.2 IMPROVEMENT IMPLEMENTATION

Armoring approximately 265 feet of the bank at the FEH site is expected to prevent the erosion of the streambank from compromising the integrity of the levee. Reinforcing the toe of the bank, adjusting the upper portion of the bank to provide a stable slope, and protecting the upper slope with erosion control blanket should provide sufficient resistance to erosion to prevent further instability. **Exhibit 4** shows a typical section of the recommended method of bank armoring. Additional methods and treatments that are applicable for bank armoring exist; however, the recommended method was selected based on limiting the risk of failure while being sensitive to overall project cost.

7.3 NEXT STEPS

The following steps are recommended to reduce the fluvial erosion hazard risk along Eagle Creek at EC-12(c):

- 1. Meet with CBBEL to discuss the findings and recommendations of this report.
- 2. Move forward with the detailed design and permitting of the proposed FEH mitigation measures for EC-12(c).
- 3. Establish a monitoring plan that records the location and condition of the streambank and other significant changes to the channel at the identified fluvial erosion hazard location and any additional FEH locations that may become a concern in the future.

CHAPTER 8 REFERENCES

- Chow, V. T. (1959). Open-Channel Hydraulics. Caldwell: The Blackburn Press.
- Leopold, L.B., Wolman, M.G., and Miller, J.P. (1964) Fluvial Processes in Geomorphology. Freeman, 522 p.
- National Oceanic and Atmospheric Administration (NOAA). National Climatic Data Center (NCDC). *Hourly Rainfall Data for Indianapolis International Airport*. Available <u>http://gis.ncdc.noaa.gov/map/viewer/</u>. Accessed October 1, 2018.
- Robinson, B.A., 2013, Recent (circa 1998 to 2011) channel-migration rates of selected streams in Indiana: U.S. Geological Survey, Scientific Investigations Report 2013–5168, 14 p. plus 1 app., http://pubs.usgs.gov/sir/2013/5168/.
- Robinson, B.A., 2013, Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana: U.S. Geological Survey, Scientific Investigations Report 2013-5078, 33 p.
- Rosgen, D, L. (1996) Applied River Morphology. Wildland Hydrology, variously paged.
- United States Geological Survey. Stream Gage Data for Station 03353460 Eagle Creek at Indianapolis, IN. Available <u>http://maps.waterdata.usgs.gov/mapper</u>. Accessed October 15, 2018.
- United States Geological Survey. Stream Gage Data for Station 03353500 Eagle Creek at Indianapolis, IN. Available <u>http://maps.waterdata.usgs.gov/mapper</u>. Accessed October 15, 2018.

Exhibits

EROSION CONTROL BLANKET -

PROPOSED GRADE

6" TOPSOIL

TYPICAL CROSS-SECTION

Appendix 1: Site Observation Photographs

Photo 1: Downstream of Dandy Trail (west bank)

Photo 2: Downstream of Dandy Trail (east bank)

Photo 3: Downstream of Dandy Trail, looking downstream

Photo 4: Downstream of Dandy Trail, looking upstream

Photo 5: Exposed erosion control blanket and riprap (east bank)

Photo 6: Riprap along east bank

Photo 7: Exposed erosion control blanket (east bank)

Photo 8: Eroded west bank

Photo 9: Upstream of site (west bank)

Photo 10: Looking downstream towards site

Photo 11: Upstream of site, looking upstream

Appendix 2: Site Assessment Data & Calculations

Bankfull Cross Section Plot

Bankfull Channel Cross-section Properties

Stream Classification Sheet

Worksheet 2-3. Field form for Level II stream classification (Rosgen, 1996; Rosgen and Silvey, 2005).

ream:	Eagle Creek				
asin:	Eagle Creek	Drainage Area:	104,960 acres	164	mi ²
cation:	Indianapolis, IN				
vp.&Rge:			Sec.&Qtr.:		
oss-Sec	tion Monuments (Lat./Long.):			Date	: 8/2018
bservers	BJM, JDF, HLF, JLE			Valley Type	U-GL-T
	Bankfull WIDTH (W _{bkf})				1
	WIDTH of the stream channel at ba	nkfull stage elevation, in a riffl	e section.	79.1	ft
	Bankfull DEPTH (dug)				1
	Mean DEPTH of the stream channe	el cross-section, at bankfull sta	ge elevation, in a riffle		
	section ($d_{bkf} = A / W_{bkf}$).			4.02	ft
	Bankfull X-Section AREA (A _{bkf})			1
	AREA of the stream channel cross-	section, at bankfull stage eleve	ation, in a riffle section.		
				317.7	ft ²
	Width/Depth Ratio (White / d	hkf)			1
	Bankfull WIDTH divided by bankfull	mean DEPTH, in a riffle section	on.	19.7	ft/ft
	Maximum DEPTH (d)				-
	Maximum depth of the bankfull char	nnel cross-section, or distance	between the bankfull stage		
	and Thalweg elevations, in a riffle s	ection.	j.	5.6	ft
	WIDTH of Flood-Prone Are	a (W,)			1
	Twice maximum DEPTH, or $(2 \times d_m)$	<pre>bkf) = the stage/elevation at wh</pre>	nich flood-prone area WIDTH	I	
	is determined in a riffle section.			107	ft
	Entrenchment Ratio (ER)				1
	The ratio of flood-prone area WIDT	H divided by bankfull channel	WIDTH (W _{fpa} / W _{bkf}) (riffle		
	section).			1.4	ft/ft
	Channel Materials (Particle	e Size Index) D ₅₀			1
	The D ₅₀ particle size index represer	its the mean diameter of chan	nel materials, as sampled		
	from the channel surface, between	the bankfull stage and Thalwe	g elevations.	26.7	
				20.7	lmm
	Water Surface SLOPE (S)				
	Channel slope = "rise over run" for a length, with the "riffle-to-riffle" water	a reach approximately 20–30 l surface slope representing th	pankfull channel widths in e gradient at bankfull stage		
			o gradioni at banitan otago.	0.000532	ft/ft
]
	Sinuosity is an index of channel pat	tern determined from a ratio o	of stream length divided by		
	valley length (SL / VL); or estimated	from a ratio of valley slope di	vided by channel slope (VS /		
	S).			1.04	
	Stroom				7
				`	1

Geotechnical Investigation

SOIL PROFILE_STATION 09050035IND.GPJ CTL.GDT 12/10/10

Indianapolis PAL Levee Accrediation Project Levee: EC-12 Cross Section: A

Case: End of Construction Water Side Analysis - Effective Stress

Indianapolis PAL Levee Accrediation Project Levee: EC-12 Cross Section: B Case: Rapid Drawdown Water Side Analysis

Indianapolis PAL Levee Accrediation Project Levee: EC-12 Cross Section: C Case: End of Construction - Total Stress

Geotechnical Investigation City of Indianapolis PAL Levee Accreditation Project Levee EC-12(c) CTL Project No.: 09050035IND June 6, 2011 Page 8

	Factor of Safety for Slope Stability							
Parameter	Existing		Steady		Rapid		Earthquake	
	Condition		Seepage		Drawdown		Zurunquant	
Side of Levee	Water	Dry	Water	Dry	Water	Dry	Water	Dry
Cross Section "A"	1.7	3.9	1.62	3.0	1.6		1.1	2.2
Cross Section "B"	< 1.0		0.8	2.8	0.8	3.1	not per	formed
Cross Section "C"	2.4	1.9	2.6	1.8	2.6	1.9	1.9	1.4
Minimum Allowed*	1.	.3	1.	.4	1.0 to	o 1.2	1	.0

Table 3 – Summary of Factor of Safety for Slope Stability

* Refer to EM 1110-2-1913, Table 6-1b

Various permanent methods of repair are available for consideration, including gabion walls, sheet piling with and/or without tiebacks, and riprap. As a temporary solution, the erosion along the east back of Eagle Creek was repaired with a limited amount of riprap due to construction restraints.

The temporary erosion repair using riprap along the river bank was analyzed. By analyzing the levee at the location of Cross Section B after the application of riprap, results of the stability analysis indicate that the entire levee system is stable. However, the levee system does not meet the minimum factor of safety requirements as shown in Table 4 below.

	Factor of Safety for Slope Stability Using Riprap							
Parameter	Existing		Steady		Rapid		Earthquake	
	Condition		Seepage		Drawdown			
Side of Levee	Water	Dry	Water	Dry	Water	Dry	Water	Dry
Cross Section "B"	1.0	3.1	1.1	2.8	1.0	3.3	0.8	2.0
Minimum Allowed*	1.	.3	1	.4	1.0 to	o 1.2	1.	.0

Table 4 – Summary of Factor of Safety for Slope Stability (Using Riprap)

* Refer to EM 1110-2-1913, Table 6-1b

Appendix 3: Watershed-scale Assessment Data & Calculations

Approximate Bankfull Location Map and Bankfull Dimension Comparison

		Approximate							
		Distance DS from		Approximate	Predicted	Predicted	Predicted	Departure from Expected	
	Miles from Mouth	Dam	Drainage Area	Bankfull Width [*]	Bankfull Width**	Bankfull Depth**	Bankfull Area	Bankfull Width	Description of Stream at
Measurement Location	(mi)	(mi)	(sq. mi.)	(ft)	(ft)	(ft)	(ft ²)	(ft [%])	Measurement Location
1	10.818	0.3	162.0	50	96	3.6	343	-46 ft [-48%]	Alluvium
2	10.64	0.5	163.0	80	96	3.6	344	-16 ft [-17%]	Alluvium
3	10.386	0.7	164.0	40	96	3.6	345	-56 ft [-59%]	Alluvium
4	10.181	0.9	164.0	35	96	3.6	345	-61 ft [-64%]	Alluvium
5	9.981	1.1	165.0	40	97	3.6	346	-57 ft [-59%]	Alluvium
6	9.754	1.3	165.0	80	97	3.6	346	-17 ft [-17%]	Alluvium
7	9.535	1.6	165.0	25	97	3.6	346	-72 ft [-74%]	Alluvium
8	9.305	1.8	166.0	45	97	3.6	347	-52 ft [-54%]	Alluvium
9	9.073	2.0	166.0	75	97	3.6	347	-22 ft [-23%]	Alluvium
10	8.853	2.2	169.0	55	97	3.6	350	-42 ft [-44%]	Alluvium
11	8.482	2.6	169.0	45	97	3.6	350	-52 ft [-54%]	Alluvium
12	8.03	3.1	170.0	30	98	3.6	351	-68 ft [-69%]	Alluvium
13	7.648	3.5	170.0	45	98	3.6	351	-53 ft [-54%]	Alluvium
14	7.214	3.9	173.0	75	98	3.6	354	-23 ft [-24%]	Alluvium
15	6.839	4.3	174.0	40	98	3.6	355	-58 ft [-59%]	Alluvium
16	6.235	4.9	174.0	65	98	3.6	355	-33 ft [-34%]	Alluvium
17	5.651	5.4	175.0	40	99	3.6	356	-59 ft [-59%]	Alluvium
18	5.128	6.0	175.0	70	99	3.6	356	-29 ft [-29%]	Alluvium
19	4.708	6.4	177.0	20	99	3.6	358	-79 ft [-80%]	Alluvium
20	4.356	6.7	177.0	35	99	3.6	358	-64 ft [-65%]	Alluvium
21	3.819	7.3	177.0	35	99	3.6	358	-64 ft [-65%]	Alluvium
22	3.409	7.7	205.0	50	104	3.7	385	-54 ft [-52%]	Alluvium
23	3.025	8.1	208.0	40	104	3.7	388	-64 ft [-62%]	Alluvium
24	2.578	8.5	209.0	145	104	3.7	388	41 ft [39%]	Alluvium
25	2.195	8.9	209.0	50	104	3.7	388	-54 ft [-52%]	Alluvium
26	1.792	9.3	209.0	130	104	3.7	388	26 ft [25%]	Alluvium
27	1.43	9.7	210.0	45	105	3.7	389	-60 ft [-57%]	Alluvium
28	1.081	10.0	210.0	45	105	3.7	389	-60 ft [-57%]	Alluvium
29	0.654	10.4	210.0	65	105	3.7	389	-40 ft [-38%]	Alluvium
30	0.174	10.9	210.0	35	105	3.7	389	-70 ft [-67%]	Alluvium

* Approximate bankfull width measured from cross-sections of the IndianaMap DEM. The channel width was measured at an elevation that was the predicted bankfull depth above the invert of the cross-section. This method is expected to produce bankfull widths that will be slightly higher than those that would be measured in the field (if bankfull indicators could be reasonably identified).

** Predicted bankfull width and depth determined using the Central Till Plain Region regression equations published by the USGS in Regional Bankfull-Channel Dimensions of Non-Urban Wadeable Streams in Indiana.

Appendix 4: Reach-scale Assessment Data & Calculations

Stream Gage Analysis

1 U. S. GEOLOGICAL SURVEY Seq.002.000 Annual peak flow frequency analysis Run Date / Time Program PeakFq Version 7.2 3/28/2018 07/02/2018 13:46 --- PROCESSING OPTIONS ---Plot option = Graphics device Basin char output = None Print option = Yes = No Debug print Input peaks listing = Long Input peaks format = WATSTORE peak file Input files used: peaks (ascii) - C:\Users\hfinfrock\Desktop \PEAK_CLERMONT.TXT specifications - C:\Users\hfinfrock\Desktop\PKFQWPSF.TMP Output file(s): main - C:\Users\hfinfrock\Desktop\PEAK_CLERMONT.PRT

*** User responsible for assessment and interpretation of the following analysis ***

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.001
Version 7.2 3/28/2018	Annual peak flow frequency analysis	Run Date / Time 07/02/2018 13:46

Station - 03353460 EAGLE CREEK AT CLERMONT, IN

TABLE 1 - INPUT DATA SUMMARY

Number of peaks in record	=	11
Peaks not used in analysis	=	0
Gaged peaks in analysis	=	11
Historic peaks in analysis	=	0
Beginning Year	=	2007
Ending Year	=	2017
Historical Period Length	=	11
Skew option	=	WEIGHTED
Regional skew	=	-0.200
Standard error	=	0.550
Mean Square error	=	0.303
Gage base discharge	=	0.0
User supplied high outlier threshold	=	
User supplied PILF (LO) criterion	=	
Plotting position parameter	=	0.00
Type of analysis	BI	JLL.17B
PILF (LO) Test Method		MGBT
Perceptible Ranges =	Not	Applicable

Interval Data

TABLE 2 - DIAGNOSTIC MESSAGE AND PILF RESULTS

WCF134I-NO SYSTEMATIC PEAKS WERE BELOW GAGE BASE. 0.0 EMA003I-LOW OUTLIERS WERE DETECTED USING MULTIPLE GRUBBS-BECK TEST 1 5750.0 THE FOLLOWING PEAKS (WITH CORRESPONDING P-VALUES) WERE DROPPED: 3680.0 (0.0751) WCF163I-NO HIGH OUTLIERS OR HISTORIC PEAKS EXCEEDED HHBASE. 13196.8 **WCF164W-HISTORIC PERIOD IGNORED. 11.0 **WCF233W-EXPECTED PROB OUT OF RANGE AT TAB PROB. 0.00000 0.00010 WCF002J-CALCS COMPLETED. RETURN CODE = 2

Kendall's Tau Parameters

				MEDIAN	No. of
		TAU	P-VALUE	SLOPE	PEAKS
GAGED	PEAKS	0.236	0.350	150.000	11

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.002
Version 7.2	Annual peak flow frequency analysis	Run Date / Time
3/28/2018		07/02/2018 13:46

Station - 03353460 EAGLE CREEK AT CLERMONT, IN

TABLE 3 - ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

	FLOOI	D BASE	LOGARITHMIC			
	DISCHARGE	EXCEEDANCE PROBABILITY	MEAN	STANDARD DEVIATION	SKEW	
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	1.0000 0.9091	3.8500 3.8675	0.1328 0.1005	-0.257 0.261	
BULL.17B ESTIMATE	OF MSE OF	AT-SITE SKEW	0.7764			

TABLE 4 - ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

ANNUAL <-- FOR BULLETIN 17B ESTIMATES --> EXCEEDANCE BULL.17B SYSTEMATICLOG VARIANCE CONFIDENCE INTERVALS

PROBABILITY ESTIMAT	E RECORD	OF EST.	5% LOWER 9	5% UPPER
0.9950	2992.			
0.9900	3282.			
0.9500	4190.			
0.9000 5519.	4748.		4431.0	6280.0
0.8000 6053.	5498.		5055.0	6813.0
0.6667 6619.	6274.		5706.0	7424.0
0.5000 7297.	7173.		6439.0	8243.0
0.4292 7606.	7570.		6751.0	8654.0
0.2000 8924.	9186.		7931.0	10660.0
0.1000 9971.	10380.		8748.0	12490.0
0.0400 11270.	11760.		9681.0	15000.0
0.0200 12240.	12710.		10330.0	16980.0
0.0100 13190.	13610.		10960.0	19060.0
0.0050 14150.	14460.		11570.0	21240.0
0.0020 15440.	15530.		12360.0	24300.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Version 7.2 3/28/2018	Annual peak flow frequency analysis	Run Date / Time 07/02/2018 13:46

Station - 03353460 EAGLE CREEK AT CLERMONT, IN

TABLE 5 - INPUT DATA LISTING

WATER	PEAK	PEAKFQ	
YEAR	VALUE	CODES	REMARKS
2007	5750.0	K	
2008	7410.0	K	
2009	7680.0	K	
2010	5920.0	K	
2011	7980.0	K	
2012	3680.0	K	
2013	13000.0	K	
2014	7030.0	K	
2015	7000.0	K	
2016	7120.0	K	
2017	8640.0	K	

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	8	Discharge greater than stated value
Х	3+8	Both of the above
L	4	Discharge less than stated value
K	6 OR C	Known effect of regulation or urbanization

- H 7 Historic peak
- Minus-flagged discharge -- Not used in computation -8888.0 -- No discharge value given
- Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Version 7.2	Annual peak flow frequency analysis	Run Date / Time
3/28/2018		07/02/2018 13:46

Station - 03353460 EAGLE CREEK AT CLERMONT, IN

TABLE 6 - EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER	RANKED	SYSTEMATIC	B17B
YEAR	DISCHARGE	RECORD	ESTIMATE
2013	13000.0	0.0833	0.0833
2017	8640.0	0.1667	0.1667
2011	7980.0	0.2500	0.2500
2009	7680.0	0.3333	0.3333
2008	7410.0	0.4167	0.4167
2016	7120.0	0.5000	0.5000
2014	7030.0	0.5833	0.5833
2015	7000.0	0.6667	0.6667
2010	5920.0	0.7500	0.7500
2007	5750.0	0.8333	0.8333
2012	3680.0	0.9167	0.9167

1

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	11

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 03353460 USGS EAGLE CREEK AT CLERMONT, IN

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

1 U. S. GEOLOGICAL SURVEY Seq.002.000 Annual peak flow frequency analysis Run Date / Time Program PeakFq Version 7.2 3/28/2018 07/02/2018 15:19 --- PROCESSING OPTIONS ---Plot option = Graphics device Basin char output = None Print option = Yes = No Debug print Input peaks listing = Long Input peaks format = WATSTORE peak file Input files used: peaks (ascii) - C:\Users\hfinfrock\Desktop \PEAK_SPEEDWAY.TXT specifications - C:\Users\hfinfrock\Desktop\PKFQWPSF.TMP Output file(s): main - C:\Users\hfinfrock\Desktop\PEAK_SPEEDWAY.PRT

*** User responsible for assessment and interpretation of the following analysis ***

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.001
Version 7.2 3/28/2018	Annual peak flow frequency analysis	Run Date / Time 07/02/2018 15:19

Station - 03353500 EAGLE CREEK AT INDIANAPOLIS, IN

TABLE 1 - INPUT DATA SUMMARY

Number of peaks in record	=	81
Peaks not used in analysis	=	1
Gaged peaks in analysis	=	79
Historic peaks in analysis	=	1
Beginning Year	=	1913
Ending Year	=	2017
Historical Period Length	=	105
Skew option	=	WEIGHTED
Regional skew	=	-0.200
Standard error	=	0.550
Mean Square error	=	0.303
Gage base discharge	=	0.0
User supplied high outlier threshold	=	
User supplied PILF (LO) criterion	=	
Plotting position parameter	=	0.00
Type of analysis	BU	JLL.17B
PILF (LO) Test Method		MGBT
Perceptible Ranges =	Not	Applicable

Interval Data

TABLE 2 - DIAGNOSTIC MESSAGE AND PILF RESULTS

**WCF109W-PEAKS WITH MINUS-FLAGGED DISCHARGES WERE BYPASSED. 1
**WCF113W-NUMBER OF SYSTEMATIC PEAKS HAS BEEN REDUCED TO NSYS = 79
WCF134I-NO SYSTEMATIC PEAKS WERE BELOW GAGE BASE. 0.0
EMA003I-LOW OUTLIERS WERE DETECTED USING MULTIPLE GRUBBS-BECK TEST 7
2250.0
THE FOLLOWING PEAKS (WITH CORRESPONDING P-VALUES) WERE DROPPED:

1100.0	(0.2674)
1240.0	(0.0834)
1470.0	(0.0676)
1680.0	(0.0678)
1700.0	(0.0155)
1860.0	(0.0128)
1870.0	(0.0021)

WCF156I-17B HI-OUTLIER TEST SUPERSEDED BY MIN HIST PK 24907.4 WCF165I-HIGH OUTLIERS AND HISTORIC PEAKS ABOVE HHBASE. 1 1 19000.0 WCF002J-CALCS COMPLETED. RETURN CODE = 2

Kendall's Tau Parameters

		TAU	P-VALUE	MEDIAN SLOPE	No. of PEAKS
GAGED	PEAKS	0.101	0.191	21.053	 79

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.002
Version 7.2 3/28/2018	Annual peak flow frequency analysis	Run Date / Time 07/02/2018 15:19

Station - 03353500 EAGLE CREEK AT INDIANAPOLIS, IN

TABLE 3 - ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

	FLOOI	D BASE	LOGARITHMIC		
	DISCHARGE	EXCEEDANCE PROBABILITY	MEAN	STANDARD DEVIATION	SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	1.0000 0.9120	3.7375 3.7661	0.2649 0.2227	-0.414 0.096
BULL.17B ESTIMATE	OF MSE OF	AT-SITE SKEW	0.0579		

TABLE 4 - ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

ANNUAL EXCEEDANCE PROBABILITY	BULL.17B ESTIMATE	SYSTEMATICLO RECORD	< FOR BULL G VARIANCE OF EST.	ETIN 17B ESTIMA CONFIDENCE IN 5% LOWER 95%	ATES> ITERVALS UPPER
0.9950		897.2			
0.9900		1102.			
0.9500		1875.			
0.9000	3042.	2446.		2642.0	3423.0
0.8000	3782.	3323.		3356.0	4199.0
0.6667	4649.	4356.		4188.0	5120.0
0.5000	5789.	5698.		5259.0	6369.0
0.4292	6345.	6339.		5770.0	6997.0
0.2000	8963.	9205.		8077.0	10100.0
0.1000	11320.	11560.		10050.0	13050.0
0.0400	14560.	14500.		12670.0	17290.0
0.0200	17170.	16640.		14720.0	20820.0
0.0100	19950.	18720.		16850.0	24660.0
0.0050	22900.	20750.		19080.0	28840.0
0.0020	27110.	23370.		22190.0	34950.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Version 7.2 3/28/2018	Annual peak flow frequency analysis	Run Date / Time
5/20/2010		07/02/2010 13:19

Station - 03353500 EAGLE CREEK AT INDIANAPOLIS, IN

TABLE 5 - INPUT DATA LISTING

WATER	PEAK	PEAKFQ	
YEAR	VALUE	CODES	REMARKS
-1913	19000.0	Н	
1938	-8888.0		
1939	6610.0		
1940	1860.0		
1941	1470.0		
1942	4120.0		
1943	9660.0		
1944	6610.0		
1945	4230.0		
1946	3860.0		
1947	3370.0		
1948	9550.0		
1949	7250.0		
1950	8670.0		
1951	3950.0		
1952	5520.0		

1953 1954 1955 1956 1957 1958 1959	4920.0 2250.0 2650.0 9920.0 28800.0 8560.0 6290.0	
1960 1961 1962 1963 1964 1965 1966 1967	1870.0 7110.0 9550.0 8840.0 14700.0 5230.0 1100.0 4910.0 538	
1968 1969 1970 1971 1972 1973 1974 1975 1976	5380.0 1700.0 6150.0 3460.0 3740.0 4400.0 6670.0 4900.0 7700.0	K K K K K K
1977 1978 1979 1980 1981 1982 1983 1984	2350.0 10500.0 6800.0 2800.0 5200.0 4640.0 4170.0	K K K K K K K K
1985 1985 1986 1987 1988 1989 1990 1991	9110.0 11000.0 3340.0 6350.0 9760.0 9840.0 13400.0	K K K K K K K
1992 1993 1994 1995 1996 1997 1998 1999	4450.0 6250.0 8700.0 4020.0 4770.0 7490.0 5580.0 7650.0	K K K K K K
2000 2001 2002 2003 2004 2005 2006 2007	1240.0 1680.0 9560.0 15900.0 3970.0 6960.0 2590.0 4940.0	K K K K K K

2008	7270.0	Κ
2009	6920.0	Κ
2010	4100.0	Κ
2011	7820.0	Κ
2012	3320.0	Κ
2013	14600.0	Κ
2014	7190.0	Κ
2015	7070.0	Κ
2016	6910.0	Κ
2017	8560.0	Κ

Explanation of peak discharge qualification codes

PeakFQ) NWIS	
CODE	CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	8	Discharge greater than stated value
Х	3+8	Both of the above
\mathbf{L}	4	Discharge less than stated value
K	6 OR C	Known effect of regulation or urbanization
Н	7	Historic peak
-	Minus-flag -8888.0	ged discharge Not used in computation No discharge value given
-	Minus-flag	ged water year Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Version 7.2	Annual peak flow frequency analysis	Run Date / Time
3/28/2018		07/02/2018 15:19

Station - 03353500 EAGLE CREEK AT INDIANAPOLIS, IN

TABLE 6 - EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER	RANKED	SYSTEMATIC	B17B
YEAR	DISCHARGE	RECORD	ESTIMATE
1957	28800.0	0.0125	0.0094
-1913	19000.0		0.0189
2003	15900.0	0.0250	0.0298
1964	14700.0	0.0375	0.0423
2013	14600.0	0.0500	0.0547
1991	13400.0	0.0625	0.0672
1986	11000.0	0.0750	0.0796
1978	10500.0	0.0875	0.0921
1956	9920.0	0.1000	0.1046
1990	9840.0	0.1125	0.1170
1989	9760.0	0.1250	0.1295

1943	9660.0	0.1375	0.1419
2002	9560.0	0.1500	0.1544
1948	9550.0	0.1625	0.1668
1962	9550.0	0.1750	0.1793
1985	9110.0	0.1875	0.1918
1963	8840.0	0.2000	0.2042
1994	8700.0	0.2125	0.2167
1950	8670.0	0.2250	0.2291
1958	8560.0	0.2375	0.2416
2017	8560.0	0.2500	0.2541
2011	7820.0	0.2625	0.2665
1976	7700.0	0.2750	0.2790
1999	7650.0	0.2875	0.2914
1997	7490.0	0.3000	0.3039
2008	7270.0	0.3125	0.3163
1949	7250.0	0.3250	0.3288
2014	7190.0	0.3375	0.3413
1961	7110.0	0.3500	0.3537
2015	7070.0	0.3625	0.3662
2005	6960.0	0.3750	0.3786
2009	6920.0	0.3875	0.3911
2016	6910.0	0.4000	0.4035
1979	6800.0	0.4125	0.4160
1974	6670.0	0.4250	0.4285
1939	6610.0	0.4375	0.4409
1944	6610.0	0.4500	0.4534
1988	6350.0	0.4625	0.4658
1959	6290.0	0.4750	0.4783
1993	6250.0	0.4875	0.4907
1984	6220.0	0.5000	0.5032
1970	6150.0	0.5125	0.5157
1998	5580.0	0.5250	0.5281
1952	5520.0	0.5375	0.5406
1968	5380.0	0.5500	0.5530
1965	5230.0	0.5625	0.5655
1981	5200.0	0.5750	0.5780
2007	4940.0	0.5875	0.5904
1953	4920.0	0.6000	0.6029
1967	4910.0	0.6125	0.6153
1975	4900.0	0.6250	0.6278
1996	4770.0	0.6375	0.6402
1982	4640.0	0.6500	0.6527
1992	4450.0	0.6625	0.6652
1973	4400.0	0.6750	0.6776
1945	4230.0	0.6875	0.6901
1983	4170.0	0.7000	0.7025
1942	4120.0	0.7125	0.7150
2010	4100.0	0.7250	0.7274
1995	4020.0	0.7375	0.7399
2004	3970.0	0.7500	0.7524
1951	3950 0	0.7625	0.7648
1946	3860.0	0.7750	0.7773
1972	3740.0	0.7875	0.7897
1971	3460.0	0.8000	0.8022
1947	3370 0	0,8125	0.8146
	22,0.0		J.J.IU
3340.0	0.8250	0.8271	
---------	---	--	
3320.0	0.8375	0.8396	
2800.0	0.8500	0.8520	
2650.0	0.8625	0.8645	
2590.0	0.8750	0.8769	
2350.0	0.8875	0.8894	
2250.0	0.9000	0.9019	
1870.0	0.9125	0.9143	
1860.0	0.9250	0.9268	
1700.0	0.9375	0.9392	
1680.0	0.9500	0.9517	
1470.0	0.9625	0.9641	
1240.0	0.9750	0.9766	
1100.0	0.9875	0.9891	
-8888.0			
	3340.0 3320.0 2800.0 2650.0 2590.0 2350.0 2250.0 1870.0 1860.0 1700.0 1680.0 1470.0 1240.0 1100.0 -8888.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

1

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	81

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 03353500 USGS EAGLE CREEK AT INDIANAPOLIS,

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

Bankfull Discharge Calculations

Worksheet 5-2. Computations of velocity and bankfull discharge using various methods (Rosgen and Silvey, 2005).

	Ba	n	full VEL	OCITY /	DISCHAR	GE Est	imates			
Site Eagle Creek				Location	Indiana	polis, IN				
Date	Date 8/2018 Stream Type B4c				Valley T	уре	U-GL-TP			
Observers	BJM, JDF, HLF,	JL	E		HUC					
	INPUT VAR	IA	BLES			OUTP	UT VARI	ABLES		
Bankfull (Cross-section AREA		317.7	A _{bkf} (SqFt)	Bankfu	ıll Mean I	DEPTH	4.02	D _{bkf} (Ft)	
Ban	kfull WIDTH		79.1	W _{bkf} (Ft)	Wette	d PERIM	ETER	81.70	W _{Pbkf} (Ft)	
D	84 @ Riffle		51.1	Dia. (mm)	D84	mm / 304	4.8 =	0.17	D84 (Ft)	
Ban	kfull SLOPE		0.00053	S (Ft / Ft)	Hydr	aulic RAI A _{bkf} / W _{Pbkf}	DIUS	3.89	R (Ft)	
Gravitat	ional Acceleration		32.2	g (Ft /Sec ²)	Relat	tive Roug (ft)/D84(f	hness (t)	23.195		
Dra	inage AREA		164.0	DA (SqMi)	Sh	ear Veloc u* =√gRS	ity	0.2581	u* (Ft / Sec)	
	ESTIMATIO	DN	METHO	DS		Ba	nkfull	Bankfull DISCHARGE		
1. Friction Factor	1. Friction Relative $u = [2.83 + 5.66 \text{Log} \{ \text{R / D84} \}$					2.7	Ft / Sec	866	CFS	
2. Roughness roughness. (1	s Coefficient: a) Man Figs. 5-6, 5-7) u = 1.489	ning 5*R	g's 'n' from fri 2 ^{/3} *S ^{1/2} /n	ction factor n	/ relative = 0.030	5.8	Ft / Sec	1834	CFS	
2. Roughnes b) Manning	s Coefficient: g's 'n' from Jarrett (US	GS	u = 1.489 (5): n = 0.39S ^{.3}	95* R ^{2/3} *S ^{1/2} ³⁸ R ¹⁶ n	² /n u =		Ft / Sec		CFS	
Note: This equa boulder-domina	tion is for applications involvin ted stream systems; i.e., for st	g ste ream	ep, step-pool, high types A1, A2, A3,	h boundary rou , B1, B2, B3, C2	ighness, cobble- 2 and E3.					
2. Roughnes c) Mannin	s Coefficient: g's 'n' from Stream Ty	pe	u = 1.48 n =	895* R^{2/3}*S¹ 0.037	^{1/2} /n	4.7	Ft / Sec	1487	CFS	
3. Other Meth	ods, ie. Hydraulic Geomet	ry (Hey, Darcy-We	isbach, Chez	y C, etc.)		Ft / Sec		CFS	
3. Other Meth	ods, ie. Hydraulic Geome	ry (Hey, Darcy-We	isbach, Chez	y C, etc.)		Ft / Sec		CFS	
4. Continuit Re	4. Continuity Equations: a) USGS Gage: u = Q / A Return Period for Bankfull Discharge (Yr.) Q =					20.8	Ft / Sec	6619	CFS	
4. Continuity Equations: b) Regional Curves u = Q / A							Ft / Sec		CFS	
Options for using the D84 term in the relative roughness relation (R/D84), when using estimation method 1. Option 1. For sand-bed channels: measure the "protrusion height " (h _{sd}) of sand dunes above channel bed elevations. Substitute an average sand dune protrusion height (h _{sd} in feet) for the D84 term in estimation method 1.										
Option 2. F	or boulder-dominated evations. Substitute an	har vei	nels: measure age boulder pr	several " pr otrusion hei	otrusion heigh ght (h _{bo} in feet)	nts" (h _{bo}) of for the D84	boulders above term in estima	e channel bed tion method 1		
Option 3. Fo su es	Option 3. For bedrock-dominated channels: measure several " protrusion heights " (h _{br}) of rock separations/steps/joints/ uplifted surfaces above channel bed elevations. Substitute an average bedrock protrusion height (h _{br} in feet) for the D84 term in estimation method 1.									

Flow Velocity Grids

Bankfull Velocity Grid with flowlines

100-Year Velocity Grid with flowlines

Scour Calculations

Scour Calculations for Eagle Creek

Date:	10/23/2018
Project No.:	14-0014

General Scour:

Blodgett Method:

 z_t (mean) = KD^{-0.115} $D = D_{50}$ $z_t (max) = KD^{-0.115}$ where: z_t (mean) = best fit curve, ft z_t (max) = enveloping curve, ft D_{50} = median size of bed material, ft K = 1.42 for z_t mean 6.5 for z_t max K = D₅₀ (from site visit) = 26.713 mm = 0.088 ft z_t (mean) = 1.88 ft z_t (max) = 8.60 ft

Pemberton and Lara Method (Using Blench and Lacey Constants)

$$z_{t} = KQ^{a}W^{b}D^{c}$$
$$Q = Q_{d}$$
$$W = W_{f}$$
$$D = D_{50}$$

where:

 z_t = maximum scour depth, ft K = coefficient (see table below) Q_d = design discharge, ft³/s W_f = flow width at design discharge, ft

 D_{50} = median size of bed material, mm

a, b, c = exponents (see table below)

$$Q_d = 9,400$$
 cfs
 $W_f = 189$ ft
 $D_{50} = 26.713$ mm

Condition		La	сеу		Blench					
	К	а	b	С	К	а	b	С		
Moderate bend	0.195	1/3	0	- 1/6	0.530	2/3	- 2/3	-0.1092		
Severe bend	0.292	1/3	0	- 1/6	0.530	2/3	- 2/3	-0.1092		

Moderate bend, Lacey:

Severe bend, Lacey:

z_t =

Moderate bend, Blench:

z_t = 5.01 ft

Severe bend, Blench:

3.56 ft $z_t = 5.01$ ft

Appendix 5: Triple Bottom Line and Cost Estimate Calculations

ECONOMIC							SOCIAL					ENVIRONMENTAL					
	Cummulative Score (15)	Capital Cost	Lifecycle O&M Cost	Shared Funding	Score (5)	Widespread Benefit (# of properties)	Reduce Flooding Drainage Problems	Benefit to Public Health & Safety	Benefit to Quality of Life	Score (5)	Level of Protection for Threatened Features	Impact to Adjacent Stream Reaches	Restore/ Protect Floodplain Function	Improve/ Protect Stream Habitat	Permittability	Score (5)	
Alternative Name	Weighting Factor=	0.45	0.20	0.35	1.00	0.25	0.25	0.25	0.25	1.00	0.40	0.10	0.10	0.10	0.30	1.00	
Treatment Type, or	0=	> \$1000/ft	very high	none		0	none	none	none		added risk	significant (-)	no change	no change	not permittable		
Other Project Metric	1=	>\$750/ft <\$1000/ft	high	100% Owner	vner mer mer her	1-10	limited	limited	limited		no change	minor (-)	limited	limited	very difficult	-	
	2=	>\$500/ft <\$750/ft	mod-high	75% Owner		11-30	limited-mod	limited-mod	limited-mod		minimal	no change	limited-mod	limited-mod	difficult		
	3=	>\$250/ft <\$500/ft	moderate	50% Owner			31-100	moderate	moderate	moderate		moderate	minor (+)	moderate	moderate	moderate	1
	4=	>\$100/ft <\$250/ft	low-mod	75% Other		101-300	mod-high	mod-high	mod-high		high	moderate (+)	mod-high	mod-high	low		
	5=	<\$100/ft	low	100% Other	-	300+	high	high	high		robust	significant (+)	high	high	encouraged practice		
Toe Wood	7.5	4	3	1	2.8	4	0	4	0	2.0	5	3	0	1	1	2.7	
Interlocking Concrete Jacks	7.6	3	4	1	2.5	4	0	4	0	2.0	5	2	0	0	3	3.1	
Gabion Wall	7.7	3	3	1	2.3	4	0	4	0	2.0	5	2	0	0	4	3.4	

Opinion of Probably Cost for Eagle Creek FEH Mitigation Project

Levee EC-12(c) Improvements

Line	Description	Estimated Quantities	Units	Ur	nit Price		Estimated Cost (Rounded)
1	Demolition						
2	Strip & Stockpile Topsoil	200	CY	\$	7	\$	1,000
3	Selective Tree Clearing, Grubbing, & Hauling	0.4	AC	\$	15,000	\$	6,000
4		I	Estimated	Demo	lition Cost	\$	7,000
5	Channel Improvements						
6	Mass Excavation	300	CY	\$	7	\$	2,000
7	Purchase and Haul Clay Fill Material	1,000	CY	\$	10	\$	10,000
8	Place & Compact Fill Material	1,300	CY	\$	7	\$	10,000
9	Install Riprap Toe	480	TN	\$	45	\$	22,000
10	Install Gabion Mattress	270	CY	\$	250	\$	68,000
11	Install Soil Lifts	1,320	SF	\$	19	\$	26,000
12	Install Live Willow Stakes	1,320	EA	\$	3	\$	4,000
13	Topsoil Placement	1,600	SY	\$	2	\$	4,000
14	Finish Grading	1,800	SY	\$	1	\$	2,000
15	Seeding	1,800	SY	\$	2	\$	4,000
16	Install Erosion Control Blankets	1,600	SY	\$	3	\$	5,000
17		Estimated Ch	nannel Imp	proven	nents Cost	\$	157,000
18	Miscellaneous						
19	Dewatering	1	LS	\$	2,000	\$	2,000
20	Erosion and Sediment Control	1	LS	\$	2,000	\$	2,000
21	Construction Surveying	1	LS	\$	2,000	\$	2,000
22	Construction Mobilization/Demobilization	1	LS	\$	10,000	\$	10,000
23	Project Administration & Unforeseen Additional Costs (50%)	1	LS	\$	82,000	\$	82,000
24		Esti	mated Mis	cellan	eous Cost	\$	98,000
25							
26		To	tal Consti	ructio	n Cost	\$	262,000
27							
28	Professional Services						
29	Topographic Site Survey	1	IS	\$	6 000	\$	6 000
30	Geotechnical Engineering Investigation	1	IS	ŝ	6,000	ŝ	6,000
31	Engineering Design	1	IS	ŝ	79,000	ŝ	79,000
32	Construction Observation	1	IS	ŝ	21 000	ŝ	21,000
33		Estimated F	Profession	al Šer	vices Cost	\$	112,000
34		Lotinatod i	1010001011			Ψ	112,000
35		Estimated	Total Cos	t for F	Project	\$	374,000
	Notes and Assumptions						

1 All costs are estimates based on the engineer's knowledge of common construction methods and materials. Christopher B. Burke Engineering does not guarantee that the actual bid price will not vary from the costs used with this estimate.

2 All costs are in 2018 dollars.

3 Estimated costs have been rounded.

4 This estimate does not include unforeseen costs increases that may result from shortages in fuel and materials as a result of a natural or man-made disaster.

5 Costs have been estimated without the benefit of survey data, utility coordination, or design. This estimate is intended for planning level consideration, and should only be used for such purposes.

6 This estimate does not include easement, right-of-way, or land acquisition costs that may be necessary to construct the proposed alternative.

7 This estimate does not include the cost of environmental mitigation, which may be necessary as a result of project impacts