

CITY OF BRAZIL WELLFIELD FEH MITIGATION ALONG BIG WALNUT CREEK

Prepared for:

Indiana University and the Indiana Office of Community and Rural Affairs (OCRA) in Support of the Development of the Indiana Fluvial Erosion Hazard Mitigation Manual, an Indiana Silver Jackets Initiative

October 2018

Prepared by:

Christopher B. Burke Engineering, LLC 115 West Washington Street, Suite 1368 South Indianapolis, Indiana 46204

CBBEL Project No. 14-0014.00000

Table of Contents

	Pag	<u> </u>
Table o	of Contents	. i
Execut	ive Summary	iii
Chapte	er 1 Project Overview	1
1.1	Introduction	1
1.2	Project History	1
1.3 1.4	Analysis Process	1
Chante	x 2 Data Gathering	2
2.1	Sources of Data	3
2.2	Previous Studies	4
Chapte	er 3 FEH mitigation Study	5
3.1	Identification of Assessment Reach	5
3.2 3.3	Site Assessment	5 8
3.4	Reach-scale Assessment	18
3.5	Key Findings of FEH mitigation sTUDy	21
Chapte	er 4 Stakeholder Input and Mitigation Objectives	24
4.1	Decision Making Process	24
4.Z 4.3	Prioritized Mitigation Objectives& Performance Metrics	24 25
Chante	ar 5 Passive Management Considerations	
Chapte	x 6 Active River Management Analysis	0
6.1	Vertical Stability Considerations	28
6.2	Lateral Stability Considerations	29
6.3	Proposed Mitigation Measures	29
Chapte	er 7 Recommendations	3
7.1	Monitoring	33
7.2 7.3	Gravel Pit Analysis	33
7.4	Next Steps	34
Chapte	er 8 References	5

List of Tables and Figures

Table 1: Land Use Summary	. 10
Table 2: Comparison of Observed Channel Properties with Regional Curves	. 14
Table 3: Risk Level Criteria	. 17
Table 4: Identification of Fluvial Erosion Hazards	. 17
Table 5: Triple Bottom Line Comparison of Improvement Alternatives	. 30
Figure 1: Stream Bank near Wellfield	1
Figure 2: Preliminary Assessment Reach	1
Figure 2: Wetland Area within Assessment Reach	5
Figure J: Representative Locations	0
Figure 5: West Central Indiana Annual Rainfall Denth	/ Q
Figure 6: Change in Very Heavy Precipitation	0 8
Figure 7: Brazil NCDC Rainfall Station Location	0 Q
Figure 8: Rainfall Depth Exceeded by Top 5% of Events by Duration	J
Figure 9: Land Use Conversion from 1992 - 2011	10
Figure 10: Correlation between Reelsville and Roachdale Gages	11
Figure 11: Peak Annual Flow Rate at USGS Gage in Reelsville IN	12
Figure 12: Frequency of 1.5-year Discharge at USGS Gage in Reelsville. IN	. 12
Figure 13: Average Daily Flow Volume at USGS Gage in Reelsville. IN	.13
Figure 14: Historical Lateral Migration along west bank of Big Walnut Creek	.15
Figure 15: Historical Lateral Migration along east bank of Big Walnut Creek	. 16
Figure 16: Preliminary Reach Limits vs. Refined Analysis Extent	. 18
Figure 17: Overflow Path near FEH Site	. 19
Figure 18: Sediment Competence Curve	. 20
Figure 19: FEH Site	. 21
Figure 20: Erodible Channel Materials	. 21
Figure 21: Intercepted Gravel Pit	. 22
Figure 22: Incised Channel with Detached Floodplain	. 22
Figure 23:Lane's Balance	. 23
Figure 24: Toe Protection Measures	. 28
Figure 25: Armored Channel in Indianapolis, IN	. 29

List of Exhibits

Exhibit 1 – Study Area Map

- Exhibit 2 Topographic Map of Big Walnut Creek Project Area
- Exhibit 3 Wellhead Conceptual Improvements

Exhibit 4 – Quaternary Geology

List of Appendices

Appendix 1 : Site Observation Photographs

Appendix 2 : Site Assessment Data & Calculations

Appendix 3 : Watershed-scale Assessment Data & Calculations

Appendix 4 : Reach-scale Assessment Data & Calculations

Appendix 5 : Triple Bottom Line & Cost Estimate Calculations

EXECUTIVE SUMMARY

This report documents the results and methodology used by Christopher B. Burke Engineering, LLC (CBBEL) to determine the root causes of and potential mitigation options for a fluvial erosion hazard (FEH) affecting a City of Brazil, Indiana wellfield along the Big Walnut Creek corridor. This assessment and preparation of this document was conducted in support of the development of the Indiana Fluvial Erosion Hazard Mitigation Manual, which was an initiative of the Indiana Silver Jackets, made possible through a grant from the Indiana Office of Community and Rural Affairs (OCRA). A FEH mitigation study was completed to identify the stressors leading to channel instability issues to develop conceptual mitigation solutions.

Big Walnut Creek is a major tributary to the Eel River; the watershed includes Bainbridge, Jamestown, Lizton, North Salem, and Greencastle. Channel instability and migration have been an issue for many years, most notably near the wellfield just south of Highway 40.

A system assessment of Big Walnut Creek was completed by CBBEL to identify the root causes of the erosion occurring near the at-risk wellhead. The system assessment included review of previous studies and analysis of available data that was focused primarily on the wellfield reach. The system assessment determined that five major factors are most responsible for the current channel instability and migration issues.

- **1. Highly mobile channel material:** Observations made during site visits revealed a large amount of the channel material is highly erodible, fine-grained sand.
- 2. Local hydrology: An overflow path that begins at the wellfield site appears to have exacerbated the initial erosion at the site.
- **3. Sediment 'sinks':** A large gravel pit just downstream of the wellfield may currently be contributing to channel instability and will likely cause more severe channel instability in the future.
- 4. Channel incision and inadequate floodplain storage: Confinement of the flow in the channel and the lost floodplain storage have resulted in significant erosion risk.
- 5. Increased flow rates and flow volume: Higher peak flow and more flow volume have resulted in longer-lasting and more erosive flows that destabilize the stream.

The observed bank migration rate at the FEH site and the distance from the stream to the wellhead suggest that improvements are not immediately necessary. A monitoring program should be established to evaluate the bank migration and level of instability in Big Walnut Creek near the gravel pit. If the migration rate increases, or a catastrophic failure of the bank occurs, consideration for a more proactive means of reducing the risk to the wellfield is warranted.

CBBEL evaluated strategies for mitigating the FEH at the wellhead and determined that the necessary improvements are relatively minor in the short-term. The improvements include toe protection, reducing the bank slope, and improving the erosion resistance in the overflow path and are expected to cost approximately \$178,000 to implement. The long-term solution to preventing the instability in Big Walnut Creek from damaging the wellhead is more complicated due to the captured gravel pit downstream from the site. Additional evaluation is necessary to determine what measures would be necessary and to determine if it is practicable and more beneficial to correct the gravel pit rather than construct additional protective measures at the wellhead site.

CHAPTER 1 PROJECT OVERVIEW

1.1 INTRODUCTION

This report documents the results and methodology used by Christopher B. Burke Engineering, LLC (CBBEL) to determine the root causes of and potential mitigation options for a fluvial erosion hazard (FEH) affecting a City of Brazil, Indiana wellfield along the Big Walnut Creek corridor. This assessment and the preparation of this document was conducted in support of the development of the Indiana Fluvial Erosion Hazard Mitigation Manual. The development of the Manual was an initiative of the Indiana Silver Jackets. made possible through a grant from the Indiana Office of Community and Rural Affairs (OCRA). A FEH mitigation study approach was used to identify the stressors leading to channel instability issues near the Brazil wellfield and to aide in the development of conceptual mitigation solutions.

Figure 1: Stream Bank near Wellfield

1.2 PROJECT HISTORY

Big Walnut Creek is a major tributary to the Eel River, with a drainage area (DA) of 326 square-miles (mi²). Big Walnut Creek begins in Boone County, and flows south through Putnam County where it joins Mill Creek just north of Poland, Indiana to create Eel River. The watershed primarily includes the main stem without significant upstream tributaries as the orientation of the watershed is long and narrow, with a length-to-width ratio of approximately 5:1. The Big Walnut Creek Watershed extends north to the Boone County Airport south of Lebanon, Indiana and includes Bainbridge, Jamestown, Lizton, North Salem, and the majority of Greencastle. A map of the study area is shown in **Exhibit 1**. Channel instability and migration have been an issue with Big Walnut Creek for many years, most notably near the wellfield just south of Highway 40.

1.3 PROJECT PURPOSE

The purpose of the study is to determine a means of reducing the risk of damage to the existing wellhead near Brazil, Indiana due to erosion in Big Walnut Creek. A better understanding of Big Walnut Creek is required to determine the current characteristics of the channel and watershed, to identify the root causes of the channel instability, and to determine what, if any, mitigation strategies are warranted, applicable, and able to be implemented without detrimental impact to adjacent stream reaches.

1.4 ANALYSIS PROCESS

The project was completed in several successive phases. Phase I of the project included a significant data gathering effort. The information acquired during the data collection phase included local testimony collected during an initial stakeholders' meetings on June 17, 2016 and February 3, 2017, previous studies, observations from site visits, historical aerial photography, streamflow data, rainfall data, soils information, and land use data.

The second phase of the project consisted of the assimilation and processing of the data collected during Phase I to determine the major themes of the current morphologic condition of the site and the river system. The processed data were then used to identify the watershed- and local-scale stressors acting on the river system.

Phase III involved the development of conceptual solutions for the stressors identified in Phase II of the project. An implementation sequence of the recommended strategies was also developed during this portion of the work.

CHAPTER 2 DATA GATHERING

Existing data and previous studies, where available, were used as supporting information for the FEH mitigation study. Additional data and observations were collected to provide a more comprehensive understanding of the physical processes at work near the site and within the river system. The following sections detail the origin and use of existing datasets and applicable previous studies, as well as the type and extent of additional information gathered.

2.1 SOURCES OF DATA

Topography Data

The analysis of the Big Walnut Creek corridor near the site and watershed required detailed topographic information for various calculations. The 2012IndianaMap Digital Elevation Model (DEM) was used as the source of topographic data for bankfull width approximation, floodplain connectivity considerations, and as the terrain source for a twodimensional hydraulic model. The IndianaMap DEM covers the entire Big Walnut Creek Watershed and has a 5-foot cell resolution, which is sufficient for producing 1-foot contours.

A limited site survey was completed by CBBEL on April 14, 2017 to allow for channel classification and confirmation of the 2012 DEM accuracy.

A topographic map of the Big Walnut Creek Watershed is provided in **Exhibit 2**.

Soil & Land Use Data

Information concerning the properties of the soil as well as the types and extent of land use practices in the area were necessary for a portion of the analysis. Soil information was obtained from the National Resource Conservation Service's (NRCS) Soil Survey Geographic Database (SSURGO).

Land use information was gathered from the 2011 National Land Cover Dataset (NLCD). Aerial photography from the 2012 IndianaMap Framework Dataset was inspected to generally confirm the land uses shown in the NLCD data.

The characterization of channel bed and bank material was completed using visual observation and the Quaternary Map of Indiana (Gray, 1989).

Rainfall Data

Rainfall information was gathered from several weather stations from the National Climatic Data Center (NCDC). This information was used to examine the changes in storm frequency, duration, and intensity over time.

Streamflow Data

Streamflow information served as a critical component to the hydrologic analysis completed as a part of this study. All streamflow information was obtained from the United States Geological Survey's (USGS) online portal.

Aerial Photography

Aerial photography of the Big Walnut Creek Watershed was obtained from multiple sources. The primary source of aerial photography information was the 2012 IndianaMap Orthophotography. Historical aerial imagery was collected from Google Earth, as well as the Indiana Historical Society archives.

2.2 PREVIOUS STUDIES

The review of previous studies in the Big Walnut Creek Watershed was limited to hydrologic and hydraulic analyses, as well as a small number of other reports of significance to fluvial stability and flooding considerations.

Recent (circa 1998 to 2011) Channel Migration Rates of Selected Streams in Indiana (USGS, 2013)

A total of 42 stream reaches in Indiana were measured to determine observed lateral migration rates of the streams, or how much a channel's banks shift relative to the surrounding land features. Lateral migration rates can be used as a surrogate for overall stream stability. The analysis completed by the USGS revealed that of the streams considered, Big Walnut Creek has the 5thhighest lateral migration rate. The channel moves at a rate of almost 12 feet per year on average, with the maximum migration rate reaching a value of almost 23 feet per year.

Regional Bankfull Channel Dimensions of Non-Urban Wadeable Streams in Indiana (USGS, 2013)

Regionally-based relationships for channel dimensions were developed by analyzing data from streams throughout Indiana. The data was obtained from 81 streams that are non-urban, wadeable, and pristine or naturalized. The regional equations can be used to determine a channels departure from the expected dimensions as well as to aid in channel restoration design processes.

U.S. Department of the Interior U.S. Geological Survey

CHAPTER 3 FEH MITIGATION STUDY

The FEH mitigation study included consideration of the findings of previous studies, an extensive site investigation, and the contributing watershed area to the main stem of Big Walnut Creek. The FEH mitigation study was broken into three major categories of observations and analysis, including site assessment, watershed-scale assessment, and reach-scale assessment. The following paragraphs provide an overview of each component of the FEH mitigation study.

3.1 IDENTIFICATION OF ASSESSMENT REACH

The preliminary identification of an assessment reach is necessary to determine the extent of the stream that will be evaluated during the site assessment, to establish the portion of the overall watershed that should be considered during the watershed-scale assessment, and to provide an initial estimate of the extent of the reach-scale assessment.

A preliminary assessment reach is centered on the FEH location and extends a minimum of 12 bankfull widths in the upstream and downstream direction. The anticipated bankfull width of Big Walnut Creek at the location of the FEH was determined by applying the contributing drainage area at that point in the stream (316 mi²) to the regional bankfull equations for the Central Till Plain in Indiana. An approximate bankfull width of 120 feet was determined. The preliminary assessment reach identified for the FEH site is shown in Figure 2.

Figure 2: Preliminary Assessment Reach

3.2 SITE ASSESSMENT

Site visits were conducted on April 4 and 14, 2017 to observe the river corridor along the preliminary assessment reach to determine the characteristics of the channel, to help identify the physical processes occurring in the channel, and to assess the presence and condition of the habitat in the reach. Photographs from the site visit are provided in Appendix 1. The site observations focused on measuring key dimensions of the channel,

evaluating the quality and availability of the in-stream and riparian habitat and locating signs of morphological change, or changes in the channel, such as scoured and/or failed streambanks, significant upland erosion, and sediment deposition.

3.2.1 Channel Properties and Level II Classification

Observations and representative measurements were made to allow for the assessment reach to be classified and to provide information that can be evaluated to determine if the channel should be expected to be relatively stable or unstable.

Big Walnut Creek is a C4/5 stream according to Rosgen Classification of Natural Rivers. A C4/5 stream is a slightly entrenched stream with moderate sinuosity, gentle slope, and gravel streambed. A copy of the field measurements and stream classification form is provided in Appendix 2.

The exposed soil profiles in the eroded streambanks through the assessment reach were observed to be primarily formed of sandy, mobile material, even at the toe of the slope. The lack of an erosion resistant material at the toe of the slope suggests that lateral migration and scour will continue.

3.2.2 Habitat Assessment

Aquatic and riparian resources were evaluated via habitat evaluation, fish sampling, aquatic macro-invertebrate evaluation, and wetland delineation.

The stream habitat quality was evaluated using the Qualitative Habitat Evaluation Index (QHEI), which uses channel substrate, instream cover, channel morphology, riparian zone and bank erosion, pool/glide and riffle/run quality, and stream gradient to characterize the diversity and robustness of the stream habitat. The QHEI score for the assessment reach was 77, indicating that the reach has habitat that is considered 'more diverse'.

Fish sampling and evaluation was completed by electrofishing and calculating an Index of Biotic Integrity (IBI). The resulting IBI score was 28, which is considered poor and is indicative of a stream that is dominated by a small number of species (8), with very few sensitive species (1) being observed.

Macro-invertebrate habitat was evaluated using the macro-invertebrate Index of Biotic Integrity (mIBI) which summarizes the macroinvertebrate community into a single pollution tolerance value. The mIBI score for the assessment reach was 32, which correlates to an impaired condition.

The wooded riparian vegetation and mature physical structure of Big Walnut Creek helps to support habitat quality that is rated as good based on the QHEI protocol; however, macro-

Figure 3: Wetland Area within Assessment Reach

invertebrate and fish indices indicate impaired biological integrity. As a result, the overall

quality habitat can be qualitatively described as Fair to Poor. Additional detail concerning the habitat assessment can be found in the water quality report in Appendix 2.

Wetland delineations were conducted using methods identified in the Regional Supplement to the Corps of Engineers Delineation Manual: Midwest Region (Version 2.0) (August 2010). Four wetlands and five streams were identified including Big Walnut Creek, a perennial stream under both state and federal jurisdiction. See Appendix 2 for the Big Walnut Creek Wetland Delineation Report. Forested wetlands provide high-value habitat; as a result, the wetland areas should be protected if the recommended improvements include adjacent work. The full wetland delineation report is provided in Appendix 2.

3.2.3 Channel Stability Assessment

An assessment of channel stability was completed using the Bank Erosion Hazard Index and the Phankuch-Rosgen Stability Rank to qualitatively define the level of instability present in Big Walnut Creek in the assessment reach. Evaluations using both methods were determined at 2 representative locations within the assessment reach, one on either side of the FEH site. Calculation sheets for each type of evaluation are provided in Appendix 2.

Bank Erosion Hazard Index

The Bank Erosion Hazard Index (BEHI) is used to assess the condition of channel banks and the potential for erosion by characterizing bank geometry and vegetation. The upstream and downstream BEHI scores were 37 and 59, respectively, indicating that while the downstream reach is far more prone to bank erosion, both areas have a significant risk of bank erosion.

Phankuch-Rosgen Stability Rank

The Phankuch-Rosgen stream channel stability ranking procedure uses detailed observations of the upper and lower banks, channel bottom, and stream classification to characterize a stream as stable, moderately unstable, or unstable. The upstream portion of the assessment reach was determined to be moderately unstable, while the downstream portion of the assessment reach was determined to be unstable.

Figure 4: Representative Locations Upstream (above), Downstream (below)

3.3 WATERSHED-SCALE ASSESSMENT

An evaluation of the contributing watershed was completed to determine if there are systemic issues contributing to the instability noted at the FEH site. The watershed assessment was also used to determine the potential causes of observed changes at the site.

3.3.1 Rainfall Analysis

The average annual precipitation in the Big Walnut Creek Watershed is approximately 43 inches. The annual precipitation has an increasing trend over the last 45 years, increasing by approximately 8 inches, or approximately 0.2 inches per year, as shown in Figure 5.

Figure 5: West Central Indiana Annual Rainfall Depth

More relevant with regards to erosion potential than annual average precipitation is the frequency of heavy rainfall events. Previous studies of National Weather Service data from 1958 to 2012 has shown that the Midwest has seen the amount of precipitation falling during the heaviest 1% of storms increase by 37%, as shown in Figure 6.

Figure 6: Change in Very Heavy Precipitation

Percent changes in the amount of rainfall falling in the heaviest 1% or rainfall events from 1958 – 2012, from the 2014 National Climate Assessment

during the heaviest 1% of rainfall events has remained relatively constant since the gage's installation in 1948.The percentage of rainfall falling during the heaviest events has ranged from 14% to 34%, with an average of approximately 23% per year.

Rainfall intensity can also be described by the depth of rainfall that occurs over a given duration. The rainfall depth for various event durations was

Figure 7: Brazil NCDC Rainfall Station Location

analyzed for the Big Walnut Creek Watershed using the Brazil rain gage data. The analysis considered the depth of rainfall to occur in 5 given durations to determine how the intensity for the top 5% of the most severe events has changed over time. Figure 8 shows the 10-year moving average of the rainfall depth exceeded by only 5%- of events for each duration. The graphs show that in the vicinity of the rain gage, the rainfall intensities have been increasing in recent years.

Figure 8: Rainfall Depth Exceeded by Top 5% of Events by Duration (10-year Moving Average)

Though the analysis of the Brazil rain gage did identify a discernable trend in the frequency of heavy rainfall events, analysis of a single gaging station does not necessarily reflect climatic trends of an entire region, such as that noted in Figure 6.

3.3.2 Land Use Change

The current land use within the Big Walnut Creek Watershed is primarily a mix of agricultural and urban land. A summary of the different land use classifications in the watershed from 1992 to present day are provided in Table 1.

A slight shift in the proportion of agricultural, forested, and urban lands occurred between 1992 and 2001. There has been little change in the land use conditions in the watershed between 2001 and 2011.

Figure 9 shows a visual of the land use conversions that occurred between 1992 and 2011. The

Watershed Land Use by Year (%)					
Land Use Description	1992	2001	2006	2011	
Open Water	0.5%	0.5%	0.5%	0.5%	
Urban	1.1%	3.5%	4.1%	3.7%	
Barren / Rock	0.0%	0.0%	0.0%	0.0%	
Forested	16.6%	23.0%	23.0%	23.1%	
Shrub / Scrub	0.0%	0.0%	0.0%	0.0%	
Grassland / Herbaceous	0.0%	0.6%	0.8%	0.6%	
Agricultural	81.7%	72.3%	71.6%	72.1%	
Wetland	0.1%	0.0%	0.0%	0.0%	

Table 1: Land Use Summary

relatively small amount of change that has occurred to the land use intensity likely has no significant implications on the way that the watershed responds to rainfall, which is discussed more thoroughly in Section 3.3.1. A larger-scale image and data summary are provided in Appendix 3

Figure 9: Land Use Conversion from 1992 - 2011

3.3.3 Watershed Hydrology

The response of a watershed to rainfall is a key factor in the amount of fluvial instability and flooding risk potential posed by a stream. The amount of runoff and the time required for the flow to reach the stream affect the erosive potential in the channel and determine how much flow must pass through the most restrictive sections of the channel, which may or may not result in significant flooding. Increased drainage efficiency in agricultural areas, urban development, and other intensive land uses frequently increase runoff and decrease infiltration. These changes often result in higher and more frequent peak flows, a larger volume of runoff, and a much faster response that can lead to flash floods.

Big Walnut Creek has two streamflow gages within the watershed, one near Reelsville and one near Roachdale. The Reelsville gage was in operation from 1949 to 2002 and is located near the downstream end of the project limits. The Roachdale gage is currently active and has been in service since 2001. The Roachdale gage is located upstream of the assessment reach. The gage data for both gages was analyzed to develop a relationship that correlates the flow from one gage to the other to allow the Reelsville gage record to be synthesized for the period from 2002 to the present; the relationship is shown in Figure 10.

Figure 11 provides a plot of the peak annual flow rate for the Reelsville gage. The streamflow gage data shows the 10-year average peak annual flow rate has been increasing since 1985 and is slightly higher than the highest average in 1971. In 1985 the average peak annual flow was approximately 6,500 cubic-feet per second (cfs). By 2016 the average peak annual flow increased to approximately 13,100 cfs, more than double the 10-year average annual peak flow rate in 1985; this equates to an average of 2% increase each year for the past 31 years.

Figure 11: Peak Annual Flow Rate at USGS Gage in Reelsville, IN

It is important to remember that erosion can occur in streams at any flow rate. High flow rates obviously lead to high erosion rates; however, it is typically the 1.5-year flow rate (approximately bankfull) that statistically moves the most sediment over time and not the 100-year flow rate. This fact highlights the true nature of erosion in streams, a relatively slow and grinding process that is constantly reshaping the channel. A statistical analysis of the Big Walnut Creek gage data suggests that the 1.5-year flow rate is approximately 6,600 cfs. For a healthy stream, the 1.5-year flow rate will occur for a few hours every 18 months; in Big Walnut Creek, the 1.5-year flow rate has been occurring more frequently and for a longer duration since 1995 and now occurs [on average] for a full day each year, as shown in Figure 12.

Figure 12: Frequency of 1.5-year Discharge at USGS Gage in Reelsville, IN

The increase in the amount of time when the channel is at bankfull conditions is partly due to the faster development of runoff in the watershed that results in increased peak flow rates, and it is also partly due to an increase in runoff volume.

The increase in annual rainfall and increased drainage efficiency of agricultural areas has caused a larger quantity of runoff volume during storm events. For reference, 1 acre-foot (ac-ft) of water is approximately equal to a full football field covered with 1 foot of water. Figure 13 shows the average daily flow volume for Big Walnut Creek, which has increased from 620 ac-ft in 1950 to 860 ac-ft in 2015; this equates to a 39% increase in flow volume. The rain-adjusted flow volume trend provides an indication of how much the increased rainfall depth may be affecting the flow volume; the rain-adjusted flow volume in 2015 was 770 ac-ft, or approximately 24% more than 1950, still a very significant increase.

Figure 13: Average Daily Flow Volume at USGS Gage in Reelsville, IN

3.3.4 Comparison of Channel Dimensions to Regional Curves

The apparent bankfull width of the channel was determined at 13 locations along Big Walnut Creek. The measurements were made using the IndianaMap DEM to determine the channel geometry. The method used is expected to produce slightly wider bankfull widths than would likely be observed if field measurements were taken; despite this inherent exaggeration, the values shown in Table 2 can provide an understanding of the departure from bankfull widths calculated using regional curves. "Regional curves" are developed relationships between drainage area and bankfull channel dimensions. The Indiana regional curves were developed in 2013 by the USGS by measuring stream channel dimensions in some of the most natural or least disturbed stream reaches in Indiana and can be invaluable in understanding how modified a stream reach may be.

Moderate deviation from the expected value is evident through the area from upstream of US 40 continuing to location of the USGS gage near Reelsville. It should be noted that the channel passes through alluvium in all areas where the stream is significantly over-widened. A map of the measurement locations is provided in Appendix 3.

Measurement Location	Drainage Area (sq. mi.)	Approximate Bankfull Width [*] (ft)	Predicted Bankfull Width ^{**} (ft)	Departure from Expected Bankfull Width (ft [%])	Surficial Geology at Measurement Location
1	119.4	85	87	2 ft [-2%]	Siltstone and Shale
2	131.0	95	90	5 ft [6%]	Alluvium
3	154.6	105	95	10 ft [11%]	Alluvium
4	162.6	110	96	14 ft [14%]	Alluvium
5	194.4	120	102	18 ft [18%]	Alluvium
6	208.0	110	104	6 ft [6%]	Alluvium
7	215.5	110	105	5 ft [4%]	Alluvium
8	293.6	105	117	12 ft [-10%]	Alluvium
9	303.6	115	118	3 ft [-3%]	Alluvium
10	315.1	100	119	19 ft [-16%]	Sandstone, Shale, and
11	316.2	135	120	15 ft [13%]	Alluvium
12	326.0	145	121	24 ft [20%]	Alluvium
13	331.8	120	121	1 ft [-1%]	Alluvium

Table 2: Comparison of Observed Channel Properties with Regional Curves

*Approximate bankfull width measured from cross-sections of the IndianaMap DEM channel width was measured at an elevation that was the predicted bankfull depth above the invert of the cross-section. This method is expected to produce bankfull widths that will be slightly wider than those that would be measured in the field (if bankfull indicators could be reasonably identified).

**Predicted bankfull width and depth determined using the Central Till Plain Region regression equations published by the USGS in Regional Bankfull-Channel Dimensions of Non-Urban Wadeable Streams in Indiana.

3.3.5 Lateral Migration Analysis

CBBEL completed a comparison of historical imagery for the assessment reach to determine the apparent migration rate of 11 locations over an 18-year period (1998 – 2016). The streambank was traced in each image to allow for a consistent means of measurement and to provide visualization of the lateral migration. Figure 14 and Figure 15 illustrate the channel migration over the 18-year period. The alignment of both banks were traced using aerials from 1998, 2008, 2011, and 2016. The migration rates for the assessment reach banks were similar to slightly higher than that of the neighboring sites on the Big Walnut Creek from the 2013 UGSG analysis of WC-4 and WC-5. The migration rate at WC-4 is higher than all but two of the USGS study locations along the Big Walnut Creek and is influenced by the instability caused by the gravel pit downstream of its location. The migration rate between Locations 1 and 3, shown in Figure 14, has increased between 2011 and 2016.

The highest lateral migration rate was observed at Location 1. Visual observation of the bank line tracings indicates that the lateral migration rate immediately downstream of the measurement location is even higher. The capture of the gravel pit appears to have a severe detrimental impact to the stability of the banks.

Figure 14: Historical Lateral Migration along west bank of Big Walnut Creek

3.3.6 Identification of At-Risk Infrastructure

The fluvial erosion hazard corridor for Putnam County was used to establish the at-risk area and which infrastructure would need to be evaluated. Each location within the assessment reach where significant infrastructure was located within the corridor was examined to determine the migration rate of the channel and the perceived risk level given the anticipated detrimental impact if the infrastructure was compromised. The risk level was determined according to the criteria in Table 3.

Table 4 provides a summary of all the at-risk infrastructure identified during the assessment, including the risk level and contributing factors. The table also includes the analysis locations from the 2013 USGS report.

Table 3: Risk Level Criteria

Risk Level	Stability Level	Impact to Public if Infrastructure is Compromised		
High	Unstable	Minor Disruption → Severe risk to public health or loss of critical infrastructure		
	Recently Stable / Transitional	$\begin{array}{l} \mbox{Moderate Disruption} \rightarrow \mbox{Severe risk to public health or loss of critical} \\ \mbox{infrastructure} \end{array}$		
	Stable	Severe risk to public health or loss of critical infrastructure		
Moderate	Unstable	Minor Disruption → Significant disturbance to daily commute/activities		
	Recently Stable / Transitional	Moderate Disruption → Significant disturbance to daily commute/activities		
	Stable	Significant disturbance to daily commute/activities		
Low	Unstable	No disruption \rightarrow Minor disruption to localized areas		
	Recently Stable /	No disruption \rightarrow Minor disruption to localized areas		
	Transitional			
	Stable	Minor disruption to localized areas		

Table 4: Identification of Fluvial Erosion Hazards

Location FEH Description		Impact of Compromised Infrastructure	Risk Level
CB-1	Road (CR 875 S)	Minor disruption to localized area	Low
CB-2	Gravel Pit	Gravel Pit Potential destabilization of US & DS channel	
WC-4	WALNUT-4	-	-
CB-3	Refined Products Line	Potential disruption of utilities	Low
CB-4	Well	Severe risk to loss of critical infrastructure	High
CB-5	Well	Severe risk to loss of critical infrastructure	High
CB-6	Powerline	Potential disruption of power	Low
CB-7	Powerline	Potential disruption of power	Low
CB-8	Structure	Potential loss of life and homes	Low

3.4 REACH-SCALE ASSESSMENT

A more detailed evaluation of the assessment reach was completed to quantify the parameters needed to develop conceptual active management solutions. The analyses were also used to further improve the understanding of the local system. The following paragraphs summarize the additional analyses completed for the reach-scale assessment.

3.4.1 Refined Assessment Reach

The preliminary assessment reach extent was evaluated to determine if the detailed analyses should cover the entirety of the reach or if analysis and evaluation efforts could be limited to a smaller area. Figure 16 shows the extent of the preliminary assessment reach and the refined assessment reach.

Some of the analyses completed considered areas beyond the refined assessment reach but did so only to reduce the influence of assumptions and selected boundary conditions for the hydraulic model.

Figure 16: Preliminary Reach Limits vs. Refined Analysis Extent

3.4.2 Channel Forming Discharge Evaluation

The channel forming discharge was determined using two different methods: a gage analysis of the Reelsville USGS stream gage utilizing the Advisory Committee on Water Information (ACWI) B17C guidelines to determine the 1.5-year flow event (see Section 3.3.3), and a site assessment determination of bankfull discharge. The results of the B17C and bankfull discharge analysis are provided in Appendix 4. The channel forming discharge at the site was estimated to be 4,200 cfs, based on the results of the combined analyses, which roughly corresponds to the 1.3-year flow event.

The Big Walnut Creek has a sand and gravel streambed. Maintenance flows for a stream of this type should include the flow rate at which the larger particles on the bed is first mobilized, the bankfull or effective discharge, and the flow rate that activates and

rejuvenates the floodplain. For a gravel-bed stream that has a large sand component, the corresponding maintenance flow rates are 0.6 Q_{BKF} , Q_{BKF} , and the 25-year flow event. These flow rates equate to 2,520 cfs, 4,200 cfs, and 16,200 cfs, respectively at the FEH site.

Maintenance flows are at greatest risk of being detrimentally affected in streams where the hydrology is being significantly altered by flow withdrawal or input. Big Walnut Creek largely functions in a natural hydrologic condition; however, modifications to the channel can alter the sediment transport in the stream, particularly bedload transport. It is important that any modifications made to the channel allow for the current channel maintenance flows to move sediment in the same fashion and at or near the same threshold values.

3.4.3 Hydraulic Analysis

A two-dimensional hydraulic model was developed for the refined assessment reach to determine the speed and direction of flow in the channel near the wellfield. The hydraulic model was configured to consider flows that ranged from baseflow conditions up to flows that overtop the channel banks. Additional information concerning the hydraulic model is provided in Appendix 4.

The results from the hydraulic model indicate that the maximum flow velocity the refined in assessment reach ranges from 1.6 to 5.0 feet per second (ft/s) for considered. the flows The anticipated velocities are sufficient to mobilize the soil forming the channel banks due to the small particle size and lack of sufficient cohesion. The outside bend is likely to continue experiencing causing continued erosion. migration of the meander bend.

During more severe flow events, the hydraulic model indicates that the flow leaves the channel just upstream of the at-risk wellhead location, where the streambank is currently eroded. The velocities where the flow leaves the channel range from 3.5 to 5.0 ft/s for events up to the 100-year flow. The velocities through the overflow path are 2 ft/s or less.

Figure 17: Overflow Path near FEH Site

The hydraulic model also included the area downstream of the assessment reach to reduce the impact of boundary condition assumptions, and to provide insights into the

conveyance of flow through and around a gravel pit that has been captured by Big Walnut Creek. The high conveyance capacity of the large gravel pit causes the flow to accelerate through the upstream and downstream breaches in the gravel pit barrier. The increased velocities at the breaches have the potential to degrade the main channel bed and initiate [or continue] head-cutting in the upstream direction, potentially to, or beyond, the location of the at-risk wellhead. The diversion of flow through the gravel pit also produces a reduction of main channel velocity in the bypassed segment of the Big Walnut Creek. This reduction in velocity has the potential to increase sedimentation, which may lead to the abandonment of the reach over time.

3.4.4 Scour Evaluation & Sediment Competence

The results of the hydraulic model were used to compute general scour and bend scour the FEH site. The general scour calculations were completed using the Blodgett and Pemberton and Lara methods; bend scour was computed using the methodology outlined in the National Engineering Handbook Part 654 Chapter 9. The results of the analyses show that scour depth near the FEH site are expected to range from 3 to 6 feet for general scour, and from 3 to 8 feet for bend scour. Long-term channel degradation is not accounted for in the above-mentioned scour depths; however, it will likely be a significant factor due to the capture of the gravel pit, unless corrective actions are taken. Scour calculations are provided in Appendix 4.

An evaluation of long-term channel degradation was completed to evaluate the potential for the channel bed to be naturally armored by particles large enough that they are not mobilized and to determine the amount of degradation that is likely to occur should the capture of the gravel pit go uncorrected. The smallest armoring-particle size was determined using Borah's method from TS-14B of the Part 654 of the National Engineering Handbook, with the assumption that the 100-year event (about 20,800cfs) controlled the bed armoring process. Figure 198 shows the relationship between the

flow rate in the channel and the largest mobile particle on the channel bed. Sediment competence calculations are provided in Appendix 4.

Due to the fact that over 60% of the channel materials are not of sufficient size to resist mobilization during the 1-year event (about 1,800 cfs), it does not appear likely that the channel will be naturally armored without considerable degradation, which will likely continue until the channel reaches the equilibrium slope. An equilibrium slope was not evaluated as the gravel pit causes any determination to be highly speculative.

3.5 KEY FINDINGS OF FEH MITIGATION STUDY

The most significant factors affecting the stability of the channel through the assessment reach identified during the FEH mitigation study are described in the following paragraphs. All the stressors identified are affected by at least one of the other stressors, creating a compounding effect that reduces the overall stability of the river.

Figure 19: FEH Site

Highly Mobile Channel Material

The material forming the bed and banks of the channel is primarily gravel-sized sediment with a significant amount of sand. Soil profiles in the banks and large gravel bars within the stream suggest that the material was previously and is currently highly-

mobile, as confirmed by the sediment competence evaluation discussed in Section 3.4.4. The prevalence of erodible materials means that the stream will likely continue to be mobile for the foreseeable future due to the fact that it is infeasible to protect the entirety of the stream against erosion. The mobility of the channel sediments, given the inputs of water and sediment from the watershed, should be considered the primary cause of the stream's instability.

Figure 20: Erodible Channel Materials

Local Hydrology

The overflow path that begins at the FEH site appears to be exacerbating the initial erosion at the FEH site during relatively frequent events. The overflow path activates during events as low as the 2-year event, according the hydraulic model results. The increased flow velocity through the overflow can contribute to bank erosion, particularly because of the flow direction. Flow oriented toward the streambank imparts a significant amount of stress on the channel lining. Once the channel lining is disturbed, exposing the erodible bank materials, the erosion continues at a frequency that will effectively prevent the establishment of significant, erosion resistant vegetation that could stabilize the upper portion of the slope.

Sediment 'Sinks'

Locations in a system that have essentially no capacity to carry sediment are referred to as sediment 'sinks'. Sediment sinks can result in massive instabilities in streams with high sediment loads, such as Big Walnut Creek. The large gravel pit excavated near Big Walnut Creek, just downstream of the assessment reach serves as an enormous sediment sink when intercepted. Once the flow enters the gravel pit, the sediment transport capacity vanishes, allowing nearly all the sediment being carried to be deposited. Deposition will continue to occur until the gravel pit is filled to a level that is at or above the natural stream bed. This creates a tremendous imbalance in the sediment capacity and sediment supplied to the reach immediately downstream of the

Figure 21: Intercepted Gravel Pit near Reelsville, IN (Google Earth, 2018)

gravel pit. Once the flow re-enters the downstream channel the sediment capacity increases dramatically. The sediment supplied from the upstream reach (i.e. the gravel pit) is essentially non-existent leaving the sediment capacity to be harvested from the channel bed and banks. This is often referred to as the stream being 'hungry', as the bed and banks are rapidly eaten away. This type of stressor also leads to degradation of the channel bed upstream of the gravel pit, as described in Section 3.4.4.

Channel Incision & Inadequate Floodplain Storage

The long-term degradational trend for Big Walnut Creek has caused the channel to become incised and disconnected from the natural floodplain. The result of the channel incision and floodplain disconnection is that in many places the flow is confined to the

channel and does not have the ability to be stored in a floodplain during a 'bankfull' event, or when the channel is flowing at the bankfull discharge. In healthy streams, the channel and floodplain are connected. This has significant benefit during flooding, as excess flow and sediment can exit the channel and be stored in the floodplain.

Figure 22: Incised Channel with Detached Floodplain (Big Walnut Creek near Wellfield)

Increased Flow Rates and Flow Volume

The hydrologic analysis of the watershed discussed in Section 3.3 indicates that there is a significant amount of destabilizing activity in the watershed. The analysis of stream gage data shows a dramatic upward trend in the peak annual flow rate and indicates that a gradual climb in flow volume has occurred. Analysis of rainfall data shows that the rainfall depth and intensity have also increased, though not enough to completely explain the strong upward trend in flow rate and volume. There has been no significant land use change in the watershed to explain the remainder of the increases, which points to an increase in agricultural runoff production. Many agricultural areas in Indiana are making use of extensive tile drainage networks and surface draining to increase crop production; these systems also often lead to increases in runoff production.

The increased peak annual flow and flow volume may not be the primary factor affecting the stability of the assessment reach; however, longer-lasting and more erosive flows work to destabilize a stream. The magnitude and volume of the flow are detrimental in terms of increasing the sediment load of the stream, but the changing nature of those conditions often leads to instability, sometimes severe. Using Lane's Balance, shown in Figure 23, one can determine the effect of increased flow rates and flow volume. If the amount of water is increased on the right-hand side of the scale, it will tip, leading to degradation of the channel. Degradation should be expected to occur unless the channel boundary sediments coarsen, which the analysis of scour and bed armoring in Section 3.4.4 suggests is not likely.

Figure 23:Lane's Balance (USFWS, after Lane, 1955)

CHAPTER 4 STAKEHOLDER INPUT AND MITIGATION OBJECTIVES

The identification of the overall mitigation objectives is critical to the development of mitigation strategies and the success of the project. Establishing a clear decision-making process, evaluating the impairments to be addressed, and considering the potential improvements using a merit-based system is imperative to a prudent design. It is also important to identify what will constitute 'project success'. These factors should be considered by appropriate stakeholders.

4.1 DECISION MAKING PROCESS

The decision to proceed with a design of mitigation features will ultimately lie with the Brazil Water Utility. The conceptual improvements identified later in Chapters 5 and 6 were determined by the designer using the objectives noted below with consideration of the impairments to be mitigated and the likelihood of mitigation success.

4.2 MITIGATION OBJECTIVES

Conversations with Brazil Water Utility officials revealed concern over the long-term viability of the wellfield adjacent to Big Walnut Creek due to observations of severe streambank erosion. The following objectives were implied:

- 1. Prevent the stream from compromising the nearest wellhead [and all others]
- 2. Reduce the long-term FEH risk
- 3. Low maintenance need for improvements
- 4. Cost efficient construction

4.2.1 Impairments to be Mitigated

The FEH site has several impairments that must be considered to meet the mitigation objectives. The impairments are primarily local instabilities proximate to the FEH. The following issues must be addressed by the design:

- 1. Local flow acceleration through the overland flow path
- 2. General scour at the site, largely attributable to a highly erodible bed material
- 3. Peak annual flow rates that are on a significant increasing trend
- 4. Potential channel degradation due to the capture of the gravel pit downstream of the assessment reach

4.2.2 Functional Lift

The relatively small extent of the FEH of interest and the confining objectives for the project reduce the potential for providing function lift to the stream reach.

It may be possible to increase the stability of the immediately adjacent streambanks by better aligning flow during flooding events; however, unless the improvements extend well beyond the FEH site, negligible benefits should be expected elsewhere.

The amount of sediment load reduction or habitat construction possible for an FEH mitigation project in the assessment reach is not expected to provide significant benefit to the overall stream.

4.3 PRIORITIZED MITIGATION OBJECTIVES& PERFORMANCE METRICS

The mitigation objectives identified in Section 4.2 were provided in the order of priority that was understood from conversations with the Brazil Water Utility. The specific mitigation objectives have been expanded in the list below and are accompanied by designer-specified performance objectives intended to achieve the stated objectives:

1. Prevent the stream from compromising the nearest wellhead [and all others]:

This mitigation objective will require active management strategies to effectively stop erosion in the vicinity of the at-risk wellhead. Prudent performance metrics for the improvements near the well include:

- A. Flow velocity during the 100-year event must be below the acceptable performance threshold of the surface cover/protection to prevent erosion during all but the most extreme of flow events.
- B. Flow vectors during the full range of flow events should be well aligned with the surface contouring inundated by and adjacent to the flow.

2. Reduce the long-term FEH risk

This mitigation objective may include passive or active management strategies to reduce the risk of erosion near the at-risk wellhead or the likelihood that negative effects from the captured gravel pit would compromise the integrity of the implemented improvements at the FEH site. Specific performance metrics are as follows:

- A. Protect against long-term degradation, ideally by addressing the issue at the source (i.e. the gravel pit)
- B. Mitigation measures implemented in and adjacent to the stream should consider the potential for the peak annual flow rate to continue to rise for the engineering life-span of the project

3. Low maintenance need for improvements

Low maintenance requirements hinge on the types of improvements designed and the types of materials selected. Maintenance need is heavily dependent on uncontrolled variables (e.g. severity and frequency of flooding, debris strikes, etc.). As a result, performance metrics are limited to anticipated outcomes rather than results of detailed analyses:

- A. Maintenance activities should be required no more frequently than once, annually.
- B. Material selections should have a long (20+ year) life-span to reduce or prevent the need to replace components of the project.

4. Cost efficient construction

Minimizing the project implementation cost requires evaluation of materials and active management stabilization methods used. Though the overall cost of the improvements cannot be accurately predicted or determined prior to the selection of active management treatments, generalized goals can be established:

- A. The overall construction cost should be between \$200 and \$300 per foot of stabilized streambank.
- B. The complexity of the design should be minimized to reduce installation costs and materials should be locally available and cost efficient.

CHAPTER 5 PASSIVE MANAGEMENT CONSIDERATIONS

Passive management strategies are most effective for addressing systemic issues that are watershed-based, or site-specific issues for a location that does not have a large contributing drainage area. As a result, the use of passive management strategies for mitigation of the FEH of interest is not a standalone solution to the problem; however, passive measures can often provide an increased benefit to the design of site-specific measures.

The apparent severity of the hydrologic stressors in the contributing watershed (e.g. increased rainfall, more frequent high flows, more runoff volume, etc.) suggests that efforts should be made to promote more conservative and environmentally friendly drainage practices, particularly in agricultural settings. Control structures on tile drainage systems, cover crops, no-till, and preserving depressional storage areas could help to limit further increases in flow rates and volume and possibly reverse some of the detrimental effect of past drainage activities.

The anticipated timeframe and likelihood of implementing passive management improvements does not match up well with the project objectives, particularly the interest in immediately protecting the closest wellhead. As a result, the implementation of passive measures would be required to occur under a parallel effort to the implementation of FEH mitigation measures.

CHAPTER 6 ACTIVE RIVER MANAGEMENT ANALYSIS

Active river management includes modifications to the stream corridor that directly combat or eliminate the instabilities that are present. Various types of active management strategies can be combined to create robust improvements to specific portions of the channel or the entire channel through a given reach. Active river management methods must address both vertical and lateral instability to be effective.

6.1 VERTICAL STABILITY CONSIDERATIONS

Improvements to the FEH mitigation site will need to address two potential sources of vertical instability: scour along the toe of the bank during significant flow events and the potential long-term degradation or head-cutting caused by the downstream gravel pit.

protection measures are typically Toe necessary for FEH mitigation sites that have vertical or horizontal stability issues due to the fact that a bank is not likely to remain stable if the toe is eroded. Toe protection usually comes in the form of large stone, concrete, or wooden revetment that is designed to be immobile, even during high flow events. For sandy stream beds, large, loosely-placed rock is not a suitable means of toe protection as the material can shift out of position when smaller materials are evacuated from around the unfiltered edges of the stone placement. If the revetment stone is effectively restrained, filtered, and installed to a sufficient depth, it can provide adequate toe protection. Toe wood is a bank stabilization technique suitable for sand bed streams that utilizes large woody materials (trees, branches, etc.) to protect the toe of a bank, while also providing redirection of the flow. An example of each type of toe protection measure is shown in Figure 24.

Grade control structures are often used to prevent the process of channel degradation, or the gradual lowering of the channel invert elevation due to erosion downstream propagating upstream. Grade control structures can be made of large, immobile stone, concrete, or sheet piling and span the width of the channel to stop the upstream migration of a headcut.

Figure 24: Toe Protection Measures Riprap toe protection (top); soil lifts above toe wood (middle); toe wood (bottom)

6.2 LATERAL STABILITY CONSIDERATIONS

Failed, over-steepened, and undermined banks are unstable due to an inability to support the weight of the soil forming the bank. Where banks suffer from this type of geotechnical instability, a simple and cost-effective means of correcting the issue is to reduce the slope to a more stable angle, typically in the range of 3-feet horizontal to 1-foot vertical (3H:1V), or flatter.

Natural, healthy streams in Indiana typically meander and gradually move back and forth across their floodplain. In certain situations, such as this one, allowing the movement of

Figure 25: Armored Channel in Indianapolis, IN

stream endanger critical the can infrastructure. Utilizing an armoring system on the channel banks can help to prevent the natural erosion processes that allow the channel to move or change its shape in meaningful ways. Channel armoring is accomplished by installing a system that can withstand the flow velocity in the channel with negligible loss of bank and bed material time: over riprap. turf reinforcement mats, soil cement, etc. are examples of common armoring systems.

Flow redirection includes altering the flow patterns that develop in a channel. The flow velocity through meander bends is typically higher around the outside of the bend along the bank. This creates a situation where weaker, unprotected bank materials can become significantly eroded and develop into what is known as a cut-bank. Cut-banks are areas along the outside of a meander bend that often suffer bank failures and are characterized by over-steepened or even vertical banks. The purpose of flow redirection is to realign flow that is directed toward the bank and to reduce the flow velocity along the bank. Flow redirection can be achieved by installing specialized structures, or by regrading the channel banks.

6.3 PROPOSED MITIGATION MEASURES

The type of mitigation techniques used to improve the stability of a stream is dependent on the type of instability present in the channel. The reach of Big Walnut Creek exhibits various forms of instability, including bank and overbank scour, potential vertical instability, and minor lateral migration. The proposed mitigation techniques considered and the portions of the stream to which the strategies are applicable are discussed below.

6.3.1 Evaluation of and Selection of Improvement Alternatives

There are different treatment methods available to address the different types of instability presented at the mitigation site. For vertical instability, treatments that provide toe protection are the most applicable. These treatments include toe wood, interlocking concrete jacks, and gabion baskets. For lateral instability, treatments that provide channel armoring are the most applicable. These treatments include gabion baskets, live stakes, and erosion control blanket systems. Each of the three types of toe protection were considered in conjunction with live stakes and erosion control blankets.

A triple bottom line comparison was completed for the three channel improvement alternatives to evaluate the economic costs, social benefits, and environmental benefits. A summary of the triple bottom line comparison is provided in Table 5. The complete triple bottom line decision matrix is included in Appendix 5.

Improvement Alternative	Economic Score	Social Score	Environmental Score	Total Score
Toe Wood	2.6	1.3	3.2	7.1
Interlocking Concrete Jacks	2.2	1.0	2.8	6.0
Gabion Wall	1.8	1.0	2.5	5.3

 Table 5: Triple Bottom Line Comparison of Improvement Alternatives

Toe wood had the highest economic score because it was the least expensive and have low to moderate lifecycle cost. Gabion baskets were the most expensive and have moderate to high lifecycle cost. The interlocking concrete jacks have a low to moderate lifecycle cost but have a higher installation cost than toe wood.

Toe wood had the highest score for potential social benefits. All the protection types had a moderate to high benefit to public health and safety. Toe wood is expected to offer a limited benefit to quality to life due to the potential improvement for recreational use; the other two protection types provide no meaningful benefit beyond public health and safety. None of the protection types are expected to provide widespread benefit to properties or reduced flooding/drainage problems.

Toe wood had the highest environmental benefit score due to the potential for moderate to high improvement and/or protection to stream habitat; the other alternatives are not expected to meaningfully change the stream habitat. All the protection types provided a robust level of protection and did little to restore or protect the floodplain function of the stream. Gabion baskets could have some minor negative impacts to the adjacent stream reach due to a lack of energy dissipation.

6.3.2 Description of Improvements

The use of large woody debris (LWD), often referred to as 'toe wood', is a proven mitigation technique. It can be used to reinforce the toe of an over-steepened streambank or to protect the outside of a meander bank. The toe wood application can be made to adjust the bankfull dimensions of the channel, as well as to create floodplain benches. Erosion control blankets will be used to prevent erosion of the path near the wellfield. Toe wood had a triple bottom line score of 7.1, which was the highest of the treatments.

A schematic layout of the potential improvements is provided in **Exhibit 3**. As can be seen in the exhibit, significant impacts to the stream are required to install the treatments. It is anticipated that armoring the streambank would require the acquisition of the following environmental permits, at a minimum:

IDNR Construction in a Floodway IDEM Section 401 Water Quality Certification USACE Section 404 Dredge & Fill Permit IDEM Rule 5 Permit

The recommended bank armoring detail, or any other stabilization method, should not be used indiscriminately along the channel to 'fix' the banks. The installation of bank armoring can result in increased erosion and instability downstream of the project that impacts adjacent properties. Strategic use with great attention to detail to integrate the improvements into the stream corridor is paramount to project success.

The cost of designing, permitting, and constructing these improvements is expected to be approximately \$178,000. A detailed breakdown of the anticipated project cost is provided in Appendix 5.

6.3.3 Anticipated Performance

The improvements are expected to stabilize the streambank through the FEH site. Reinforcing the toe of the bank, adjusting the bank to provide a stable slope, and protecting the overflow path with erosion control blanket should provide sufficient resistance to erosion and prevent further migration. An evaluation of the mitigation objectives using the previously identified performance metrics is as follows:

1. Prevent the stream from compromising the nearest wellhead [and all others]:

The anticipated maximum flow velocity during the 100-year event is 9.6 ft/s in the channel and 5.5 ft/s in the overflow path. Toe wood is a particularly robust system that is capable of withstanding velocities in excess of 8 ft/s. Most permanent erosion control blanket systems have a performance threshold of up to 9 ft/s in an unvegetated state. This performance metric is met, as both erosion prevention systems have adequate erosion resistance during the 100-year event.

The adjustment of the western channel bank alignment and inclusion of a small shelf to improve the transition to the point bar cause the flow vectors to be much more well-aligned with the bank during the full range of flow events.

2. Reduce the long-term FEH risk

The FEH site is protected against long-term degradation by using toe wood, which remains stable even when the structure is slightly undercut. Without acquiring the gravel pit property or establishing an agreement with the owner, designing significant improvements, and identifying a funding source for the remediation of the captured gravel pit, the problem cannot be addressed at the source. As a result, this performance metric is only partially met.

The enlargement of the channel cross-section above the bankfull elevation increases the flow capacity in the immediate vicinity of the FEH site. As a result, the mitigation measures accommodate the potential for the peak annual flow rate to continue to rise to the greatest extent practicable given the improvements.

3. Low maintenance need for improvements

The use of mitigation measures that are only vegetative on the surface reduces the difficulty of the required maintenance activities; in fact, the grass species used in conjunction with the erosion control blankets can be selected such that they do not need to be mowed to maintain a vigorous stand.

When installed correctly, toe wood has an indefinite lifespan, as wood does not rot when continuously submerged in water. The use of non-degradable erosion control

blankets and vegetation as reinforcement reduce the likelihood that the system would need to be augmented or replaced. Toe wood is also particularly tolerant of channel degradation and slight undermining of the structure. While this reduces the overall risk to the wellfield from the captured gravel pit downstream, it does not eliminate the issue.

4. Cost efficient construction

The overall construction cost for the improvements is anticipated to be approximately \$178,000. The total length of stabilized streambank is 350 feet, resulting in a unit cost of \$508 per foot. Typically, FEH mitigation measures only need to be installed along the streambank. The anticipated construction cost excluding the expense of reinforcing the overflow path is \$345 per foot. The necessity to armor the overflow path should be further evaluated as the site ages. It may be possible to employ more effective vegetation management and forego the expense of armoring the overflow path.

The proposed methods are cost efficient and the materials should be locally available. Installing toe wood is an involved process that requires an experienced contractor to successfully implement; however, the overall goal is achieved.

CHAPTER 7 RECOMMENDATIONS

The results of the stream assessment described in Section 3.0 and the key factors influencing the stability of Big Walnut Creek described in Section 3.5 suggest that the issues are likely to persist and cannot be solved by correcting a problem in a specific location. However, the wellfield serves as critical infrastructure to Brazil, and should therefore be protected against damage from fluvial erosion. Monitoring the channel conditions at the FEH site and near the captured gravel pit will be a critical component to mitigating the fluvial erosion hazard at the wellfield.

7.1 MONITORING

The observed bank migration rate at the FEH site and the distance from the stream to the at-risk wellhead suggest that improvements are not immediately necessary, if the erosion continues to occur at the same rate. The location of the meander bend relative to the at-risk well should be monitored on an annual basis, and/or after significant flooding events. If the migration rate increases, or a catastrophic failure of the bank occurs, consideration for a more proactive means of reducing the risk to the wellhead is warranted.

The channel instability near the gravel pit downstream of the wellhead should also be monitored on a regular basis to identify the trend in the erosion and deposition, as well as the apparent impact to the upstream channel. Should conditions suggest that a wave of channel incision is occurring, additional analysis and evaluation of the instability should be completed, as discussed in Section 7.3.

7.2 IMPROVEMENT IMPLEMENTATION

Armoring approximately 350 feet of the bank at the FEH site is expected to prevent the lateral migration of the streambank. Reinforcing the toe of the bank, adjusting the upper portion of the bank to provide a stable slope, and protecting the upper slope and overflow path with erosion control blanket should provide sufficient resistance to erosion to prevent further migration. Exhibit 3 shows a typical section of the recommended method of bank armoring. Additional methods and treatments that are applicable for bank armoring exist; however, the recommended method was selected based on limiting the risk of failure while being sensitive to overall project cost.

7.3 GRAVEL PIT ANALYSIS

The potential impact of the main channel of Big Walnut Creek having captured the gravel pit downstream of the FEH site could be severe. Interception of the gravel pit will likely lead to potentially severe channel degradation that radiates in the upstream and downstream directions, further destabilizing the streambanks. It is recommended that a more detailed analysis of the gravel pit and proximate areas be conducted to determine what precautionary measures are warranted and would be sufficient to prevent further destabilization of Big Walnut Creek.

7.4 NEXT STEPS

The following steps are recommended to reduce the fluvial erosion hazard risk at the atrisk wellhead near Brazil:

- 1. Meet with CBBEL to discuss the findings and recommendations of this report.
- 2. Establish a monitoring plan that records the location of the streambank and other significant changes to the channel at the identified fluvial erosion hazard location, the gravel pit, and any additional FEH locations that may become a concern in the future.
- 3. Complete a master plan for the gravel pit to determine the precautionary measures necessary to prevent further destabilization of Big Walnut Creek.

CHAPTER 8 REFERENCES

- Chow, V. T. (1959). Open-Channel Hydraulics. Caldwell: The Blackburn Press.
- Leopold, L.B., Wolman, M.G., and Miller, J.P. (1964) Fluvial Processes in Geomorphology. Freeman, 522 p.
- National Oceanic and Atmospheric Administration (NOAA). National Climatic Data Center (NCDC). *Hourly Rainfall Data for Indianapolis International Airport*. Available <u>http://gis.ncdc.noaa.gov/map/viewer/</u>.Accessed April 6, 2016.
- Robinson, B.A., 2013, Recent (circa 1998 to 2011) channel-migration rates of selected streams in Indiana: U.S. Geological Survey, Scientific Investigations Report 2013–5168, 14 p. plus 1 app., http://pubs.usgs.gov/sir/2013/5168/.
- Robinson, B.A., 2013, Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana: U.S. Geological Survey, Scientific Investigations Report 2013-5078, 33 p.
- Rosgen, D, L. (1996) Applied River Morphology. Wildland Hydrology, variously paged.
- United States Department of Agriculture. Natural Resources Conservation Service. Urban Hydrology for Small Watersheds (Technical Release 55). June 1986.
- United States Geological Survey. Stream Gage Data for Station 03357500 Big Walnut Creek NEAR REELSVILLE, IN. Available <u>http://maps.waterdata.usgs.gov/mapper</u>. Accessed April 13, 2018.
- United States Geological Survey. Stream Gage Data for Station 03357330 Big Walnut Creek NEAR ROACHDALE, IN. Available <u>http://maps.waterdata.usgs.gov/mapper</u>. Accessed April 3, 2018.

Exhibits

CHRISTOPHER	B. BURKE ENGINEERING, LLC	CERTIFI
PNC Center, Suite 136	8 South	
115 West Washington	Street	DREL
Indianapolis, Indiana 4	6204	
(317) 266-8000	FAX: (317) 632-3306	c.0

Appendix 1:Site Observation Photographs

Photo 1: Big Walnut Creek near Wellfield site (west bank)

Photo 2: Big Walnut Creek near Wellfield site (east bank) (Note eroded slope and lack of vegetation)

Photo 3: Eroded Bank along Wellfield site

Photo 5: Sloughing Bank (Note destabilizing erosion at the toe of the slope)

Photo 6: Big Walnut Creek at Wellfield Site

Photo 7: Big Walnut Creek looking downstream towards Wellfield site

Appendix 2:Site Assessment Data & Calculations

Water Quality Report

BIG WALNUT CREEK WATER QUALITY REPORT FOR 2017 BRAZIL, CLAY COUNTY, INDIANA CHRISTOPHER B. BURKE ENGINEERING, LLC. Project No. 140014

INTRODUCTION

Christopher B. Burke Engineering, LLC. (CBBEL-Indy) completed an aquatic resource assessment of Big Walnut Creek near Brazil, Clay County, Indiana. The project stream section is located south of State Route 40 and east of the Municipal Water Pumping Station (Exhibit 1). Big Walnut Creek is located in the Interior River Lowland (Ecoregion 72) and subregion 74b the Glaciated Wabash Lowlands. One stream section was sampled (Exhibit 1) due to above average water level. The aquatic resource assessment, which included fish sampling, aquatic macro-invertebrate habitat evaluation and water quality sampling, was completed as part of an overall watershed assessment. Representative stream photographs are included at Exhibit 2.

Big Walnut Creek is a 4th order stream. The stream has characteristically well-developed deep pools and wide riffles. The substrate is sandy gravel and poorly embedded. The creek flows generally north to south through rural wooded riparian and park-like landscapes. The sampling area was chosen based on the shallowest access point in the creek at the time of the site visit (Exhibit 1).

This report summarizes the methods, results and discussion of data collected for stream habitat evaluations, aquatic macro-invertebrates, fish and water quality.

STREAM HABITAT EVALUATIONS

CBBEL completed the stream habitat evaluation using the Qualitative Habitat Evaluation Index (QHEI). Stream Habitat Results are presented in Table 1 and Water Quality Parameters are in Table 2. The QHEI data form is in Appendix A.

QHEI uses six evaluation metrics: substrate, instream cover, channel morphology, riparian zone and bank erosion, pool/glide and riffle/run quality, and stream gradient. The QHEI score is the sum total of all six metrics. A higher score represents more diverse and better quality habitat.

The QHEI scores are used to classify stream habitat as poor or more diverse, as follows (IDEM, 2012):

- Total QHEI scores <51 indicate poor habitat;
- Total QHEI scores ≥51 indicate a more diverse habitat for colonization of aquatic organisms.

Additional physical parameters were also recorded including substrate type, stream width, water depth, riparian vegetation, and water clarity.

As required by IDEM protocol, USGS realtime staff gage data for Clay County, Indiana was reviewed prior to sampling. However, none of the staff gages in Clay County were within the same drainage basin. The USGS stream gage (https://waterdata.usgs.gov/in/nwis/rt) to the west on the Wabash River near Terra Haute indicated higher than normal water levels, and to the south at Eel River near Bowling Green indicated higher than normal water level on the day of the sampling.

Results and Discussion

QHEI was completed after the fish sampling (Table 1). Big Walnut Creek was bordered by tree lined riparian woodland and open park habitats. Table 1 provides an overall summary of physical characteristics of the stream sampled. Big Walnut Creek has a drainage area approximately 316 mi² and is considered a 4th order stream.

Big Walnut Creek

Big Walnut Creek is a natural stream with a wooded riparian corridor on the east bank and a mix of park like area woodlots within the project area (Table 2). This stream section exhibited slightly higher than average flow at the time of sampling. Based on data collected during the site visit Big Walnut Creek had a QHEI score of 77 which is considered to be more diverse (Table 1)(Appendix A).

	Ave. Width (ft)	Ave Depth (ft)	QHEI	Riparian Corridor Composition	Surrounding Land Use	Drainage Area (mi ²)
Sampling Point	80	2	77	Tree, Shrub Turf	Woodland, Parkland	<u>></u> 316**
** Drainage a	area as detern	nined by Strea	mStat fo	r Indiana (https://water.i	isas aov/osw/streamst	ats/indiana html)

Table 1. Summary of Stream Habitat Data for Big Walnut Creek 2017.

area as determined by StreamStat for Indiana (<u>https://water.usgs.gov/osw/streamstats/inc</u>

Water Parameters

Water parameters such as water temperature, water clarity, dissolved oxygen, pH, and conductivity were taken during fish sampling with an YSI 556 MPS (Multiprobe System) (Table 2).

Table O	Matan Ouald	V Deremetere	frame Dia	\A/ala.it	Creation	1	0047
Table Z	vvaler Onalli	v Parameiers	mom Bla	vvamu	Creek on	June 19	ZU 17
		y i aramotoro	nom big	v van rat		ouno 10,	2017

Water Parameters	Result
Water Clarity	Fair Visibility
рН	7.8
Dissolved Oxygen (DO)	7.2 mg/L
Water Temperature (C)	24.6°
Conductivity	842 μs

BIOTIC EVALUATIONS

Aquatic life within Big Walnut Creek was collected under Indiana Scientific Purposes License #17-147. Mussels were not sampled instream due to deep water, however, shells observed on the shorelines were collected and identified (Table 6).

Aquatic Macro-invertebrates

Aquatic macro-invertebrates were sampled on June 19, 2017 by two staff at one centrally located sampling area associated with the large sand/gravel bar that also contained the most diverse habitats on Big Walnut Creek (Exhibit 1).

Methods

Aquatic macro-invertebrates were sampled a minimum of 15 meters upstream and downstream from a field identified point. CBBEL completed an IDEM Aquatic Macroinvertebrate Header form for the sampling (Appendix B). Water parameters were recorded including water temperature, dissolved oxygen, pH and specific conductivity. Representative site photos were taken (Exhibit 2). A combination of jab/sweep and kick samples were taken in representative shoreline and riffle habitats, respectively. In each sampling, large debris was removed and the sample was elutriated. The cleaned sample was picked and placed in a 250ml Nalgene container with 70% alcohol and a small amount of formalin. Sample labels were prepared for each site. Macro-invertebrates were preserved and brought back to the laboratory for identification to family, or the lowest reasonable taxonomic level.

Several indices were calculated including: cumulative EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness, macro-invertebrate IBI, and mean taxa richness.

Identification and nomenclature followed Peckarsky et al. (1990). Vouchers of aquatic macroinvertebrate specimens collected and identified during this study were retained at CBBEL.

Results and Discussion

During this study, 84 macro-invertebrates were sorted and identified from 1 sampling area including specimens from 2 phyla, 4 classes, 10 orders, 17 families, and 16 genera (Table 3). Aquatic macro-invertebrates were identified to the lowest taxonomic classification practicable. In this project all invertebrates were identified to family or genus level. In general, the majority of species collected are relatively intolerant of pollution including the Ephemoptera (mayflies), Trichoptera (caddis flies) and Odonata (dragonfly and damselfly larvae).

Phylum	Class	Order	Family	Lowest Identified Taxa Name	Number
	<u>Bivalvia</u>	<u>Veneroidea</u>	Corbiculidae	Corbicula fluminea	6
Mollusca	Castropoda	Pulmonata	<u>Physidae</u>	<u>Physidae</u>	1
	Gastropoda	<u>r uimonata</u>	<u>Lymnaeidae</u>	Lymnaeidae	1
	<u>Malacostraca</u>	<u>Decapoda</u>	<u>Cambaridae</u>	Orconectes rusticus	1
		<u>Hemiptera</u>	<u>Corixidae</u>	<u>Trichocorixia sp.</u>	6
		_	Coenagrionidae	Agria sp.	1
			Coenagrionidae	<u>Enallagma sp.</u>	1
		Odenete	<u>Calopterygidae</u>	<u>Hetaerina sp.</u>	11
		Odonata	Macromiidae	<u>Macromia sp.</u>	1
			Aeshnidae	<u>Boyeria sp.</u>	1
			<u>Oligoneuridae</u>	<u>Isonychia sp.</u>	14
Arthropoda	Inconto	Ephemeroptera	<u>Heptageniidae</u>	<u>Stenonema sp.</u>	2
	Insecta		Tricorythidae	Tricorythodes sp.	16
		Trichentere	Hydropsychidae	Macrostemum sp.	1
		Thenoplera	Hydropsychidae	Cheumatopsyche sp.	14
		Coleoptera	<u>Haliplidae</u>	Peltodytes sp.	1
			<u>Dryopidae</u>	<u>Helicus sp.</u>	2
		<u>Diptera</u>	Chironomidae	Chironomidae	1
		<u>Plecoptera</u>	<u>Perlidae</u>	<u>Neoperla sp.</u>	3
				<u>TAXA: 18</u>	84

Table 3. Aquatic Macro-invertebrates collected at Big Walnut Creek 2017 by CBBEL-Indy.

Summary of Macroinvertebrate Indices

Aquatic habitat quality was based on the macro-invertebrate Index of Biotic Integrity (IDEM undated), which summarizes the aquatic macro-invertebrate community into a single pollution tolerance value. Scores less than 36 are considered impaired while those equal to or greater than 36 are considered unimpaired. Based on the data collected mIBI for the sampling location was 32, which indicates impaired aquatic habitat quality (Table 4). However, it is close to being unimpaired and perhaps additional monitoring at different times of the year may provide more insight into water quality.

Metric	No.	Score
Number of Taxa	18	1
Number of Individuals	84	1
Number of EPT Taxa	6	3
Total Number of Diptera Taxa	1	1
% Orthocladiinae+Tanytarini	1	5
% Non-insects Minus Crayfish	9	5
% Intolerant	75	5
% Tolerant	5	5
% Predators	27	3
% Shredder + Scrapers	8	1
% Collector-Filterers	63	1
% Sprawlers	0	1
	Total	32
	Rank	Impaired

Table 4.MIBI Table for Sampling Location at Big Walnut Creek, Brazil Indiana in 2017.

Cumulative EPT Richness is the total number of taxa of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). The EPT taxa are generally considered good indicators of water quality. EPT taxa richness will decrease with degrading water quality. Six EPT taxa were collected during sampling. EPT Richness range of "0-2", can indicate lower water quality (Table 4). However Big Walnut Creek has a watershed that drains 316 square miles and 6 EPT is a moderate value.

Taxa Richness can be used as an indicator of macroinvertebrate diversity. A greater number represents a more diverse community. Generally, the number of taxa decreases with increased degradation. Taxa Richness was 18 for Big Walnut Creek which is low (Table 4). Intolerant taxa were 75%. Mayflies, Caddisflies and damselflies were the most encountered aquatic macro-invertebrates in the sample (Table 5).

Index data for aquatic macro-invertebrates collected in 2017 including mIBI, EPT, Taxa Richness, dominants and percent intolerants is summarized in Table 5.

mIBI	Rank	EPT	Taxa Richness	Dominants	% Intolerants
		(10		750/
32	Impaired	6	18	Mayflies, Caddis Flies, Damselflies	75%

<u>Mussels</u>

CBBEL-Indy completed a visual search for mussels within Big Walnut Creek, however, no live mussels were observed in the stream. However, dead shells were observed along the

shoreline and deposition areas and they were collected for identification and shell condition was noted. Fresh shells indicate living species, worn shells indicate that there may or may not be a living species in the stream. Subfossil shells are long time dead shells that are pure white and the species likely is no longer present.

Following is a list of species observed and their relative condition. Identification based on Cummings and Mayer (1992)(Table 6).

) -
Common Name	Scientific Name	Number	Condition
Pink heelsplitter	Potamilus alatus	5	Fresh to Worn
Washboard	Megalonaias nervosa	9	Worn
Asian clam	Corbicula fluminea	4	Fresh to Worn
Fatmucket	Lampsilis siliquoidea	14	Worn to Subfossil
Elktoe	Alasmidonta marginata	1	Subfossil
Three ridge	Amblema plicata	1	Worn
Creek heelsplitter	Lasmigona compressa	1	Worn
Plain pocketbook	Lampsilis cardium	12	Worn to Subfossil
Elephant ear	Elliptio crassidens	3	Worn to Subfossil

Table 6. Mussels Species collected along Big Walnut Creek on June 19, 2017

<u>Fish</u>

Fish were sampled on June 19, 2017 by two CBBEL staff at specific sampling locations within Big Walnut Creek (Exhibit 1).

Methods

Fish sampling was based on backpack electrofishing protocol (IDEM 2005). The stream sampling location was sampled once. A shallow representative stream reach within the wetted stream width within the project corridor was sampled utilizing a Smith-Root backpack electro-fishing unit set up with the following parameters: 300 volts at 60Hz. Fish were sorted by species, enumerated and external abnormalities were recorded. Non-vouchered individuals were returned to the stream. One to two individuals per species were vouchered, as well as any unidentified species, into a Nalgene bottle with 10% formalin. Photos of the sampling area and representative fish species were taken and electro-fishing time was also recorded. An Index of Biotic Integrity (IBI) score was calculated *the Interior River Lowland Calibration* (based on Simon and Dufour 2005). IBI scores that are in the range of 53-60 are excellent, 45-52 are good, 35-44 are fair, 23-34 are poor, 12-22 are very poor and <12 had no fish. Identification and nomenclature for fish followed Simon (2011). Vouchers of fish specimens collected and identified during this study were retained at CBBEL.

Results and Discussion

A total of 168 individuals of 8 species were collected during 3.2 minutes of electrofishing and several seine pulls (Table 10). Dominant species collected included River carpsucker (total = 74%) and common shiner (total = 20%) (Table 7). One intolerant species were observed the northern hogsucker. IBI was calculated for the sampling location as 28, respectively which is considered poor (integrity class) by IDEM (Table 7).

1 0	1	
Common Name	Scientific Name	Number
Creek chub	Semotilus atromaculatus	1
River carpsucker	Carpoides carpio	125
Common shiner	Luxilus cornutus	33
Silverjaw minnow	Ericymba buccata	3
Largemouth bass	Micropterus salmoides	2
Central stoneroller	Campostoma anomalum	2
Northern hogsucker	Hypentelium nigricans	1
Bluntnose minnow	Pimephales notatus	1
	Number Collected	168
	Number of Species	8
	Sensitive or Intolerant Species	1
	DELT (Abnormalities)	0
	IBI	28
Electro-fisher Parameters	Freq (Hz)	60
	Volts (v)	300
	Start	33655
	End	33848
	Total Time (seconds)	193

Table 7. Fish S	pecies in E	Big Walnut	Creek June	19, 2017.

^S =Sensitive species, ^{SI} = Sensitive and Intolerant and ^I = Intolerant

Conclusion

Big Walnut Creek is a 4th order stream with open parkland and wooded riparian vegetation with mature physical structure. Habitat quality is good based on the QHEI protocol. Macro-invertebrate and fish indices indicate impaired biological integrity. Overall quality is Fair to Poor. This baseline data can be compared over the timeframe of the project.

Table 8. Summary of Biotic Data for Streams in the Illiana Corridor B3 in Indiana in 20

Sampling Point	QHEI (Habitat)	mIBI (Invertebrates)	IBI (Fish)	Overall Quality
Sampling Point	77	32	28	Fair to Poor

Literature Cited

Cummings, K.S. and C.A. Mayer. 1992. *Field Guide to the Freshwater Mussels of the Midwest.* Illinois Natural History Survey Manual 5. 194 pp.

Indiana Department of Environmental Management (IDEM). 2005. Fish Community Assessment (Sections 5.0. and 5.1). In: Summary Protocols, Probability Based Site Assessment. Revision #7. 32/03/002/1999. July 28, 2005. 12 pp.

Peckarsky, B. L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin, Jr. 1990. *Freshwater Macroinvertebrates of Northeastern North America*. Cornell University Press. 442 pp.

Simon, T.P. and Ronda L. Dufour. 2005. Guide to appropriate metric selection for calculating the Index of Biotic Integrity (IBI) for Indiana Large and Great Rivers, Inland Lakes, and Great Lakes nearshore. U.S. Department of the Interior, Fish and Wildlife Service, Bloomington Field Office, Bloomington, Indiana.

Simon, T.P. 2011 Fishes of Indiana: A Field Guide. Indiana University Press. Bloomington, IN 345 pp.

N:\INDIANA\19-140014\BWC Big Walnut Creek Aquatic Resources 2017-1122.docx

Photo 1: Upstream View of Big Walnut Creek Sampling Area

Photo 2: Downstream View of Walnut Creek

Photo 3: Pink Heelsplitter

Photo 4: Asian Clam

Photo 5: Washboard

Photo 6: Dragonfly Larvae

Photo 7: Mayfly larvae

Photo 8: Caddisfly Larvae

Photo 9: Damselfly Larvae

Photo 10: Common Shiner

Photo 11: Silverjaw Minnow

Photo 12: River Carpsucker

Christopher B. Burke Engineering, Ltd. 9575 W. Higgins Road, Suite 600 Rosemont, Illinois 60018 847-823-0500

CLIENT:	Project No. 140014	06/12/17	
Big Walnut C Aquatic Fau	reek na	Exhibit 2	

2016 Reference Site Monitoring WP B-030-OWQ-WAP-PRB-16-W-R0 Date: December 28, 2016

Attachment 7. IDEM OWQ Biological Qualitative Habitat Evaluation Index (front).

Sample # I of I Surveyor Samp [2PS 6/1 1] SUBSTRATE Check ON estima BEST TYPES PREDOMINANT PREDMINANT PREDMIN PREDMINANT PREDMINANT PRED	le Date County 9/17 CLAY	BIG WALNUT Macro Sample Type	CASSIK	S. ROUTE 40	
Surveyor Samp [LPS 6/1 1] SUBSTRATE Check ON estima BEST TYPES PREDOMINANT PR	e Date County	Macro Sample Type	CIUDOR	12. 100018 40	
SUBSTRATE Check ON estima BEST TYPES MEDORINANT MEDORINA MEDORINANT MEDORIN	9/17 CLAY	macro sample type	VUshitat		
1] SUBSTRATE Check ON estima BEST TYPES PRESENT PRESENT PRESENT		KILR/SWEEP	Complete	QHEI Score:	77
TT RIDR/SIARS[10]	ILY Two predominant substraite % and check every type pr OTI MT TOTAL % PREDOMINANT % OR HARPDOAN	TYPE BOXES; esert HER TYPES OF PRESENT TOTAL % Fail and States fail and States	Check ONE (C LIGIN STONE[1]	Or 2 & average) QUALITY S HEAVY [-2]	
BOULDER [9]	OETRITUS	[3] Image: Constraint of the second	ANDS [0] MAN [0] MSTONE [0] MAP [0] STRINE [0] E[-1] FINES [-2]	EXTENSIVE[-2]	Substrate
21 INSTREAM COVER 1	ad only concerned 0 to 2 and a	Abreat 4	ton const house	is as if many common of many	fand
quality; 2-Moderate amounts, bi quality; 2-Moderate amounts, bi quality in moderate or greater a that is stable, well developed ro ¹⁶ Arrout UNDERCUT BANKS[1] <u>J</u> OVERHANGING VEGE 10 2 SHALLOWS (IN SLOW ROOTMATS[1]	at not of highest quality or in emounts (e.g., very large boul ot wad in deep/fast water, or] 60 3 POOLS TATION[1] ROUT (WATER)[1] BOULD	small amounts of highest qualit ders in deep or fast water, large deep, well-defined, functional p >>70cm[2]OXBOWS NADS[1]AQUATEC XERS[1]AQUATEC	r; 3-Highest diameter log cols.) BACKWATERS[MACROPHYTES] WOODY DEBRIS	AMOUNT Check ONE (Or 2 & av EXTENSIVE > 75% MODERATE 25 - 7 MARKE 5 - 6 25% DIAL COVER AND COVER Maximum	erage) %[11] 5%[7] 5%[7] 5%[1]
Comments				20	12
SINUOSITY HIGH[4] LOW[2] NONERATE[3] NONE[1] Comments	DEVELOPMENT DEVELOPMENT EXCELLENT[7] S GOOD[5] FAIR[3] □ POOR[1]	CHANNELIZATION CHANNELIZATION RECOMENED(4) RECOMERED(4) RECOMERED(3) RECENTOR NO RECOMERY	STAB HIG X MOO LOW	ILTTV H[3] DBATE[2] Channe V[1] Maximun 20	16
4] BANK EROSION AN Inversite locking downstream [R EROSION X NONE/LITTLE[3] X MODERATE[2] HEAVY/SEVERE[1] Comments	D RIPARIAN ZONE Ch R RIPARIAN WIDTH WIDE > 50m[4] MODERATE 10-50m[3] NARROW 5-10m[2] VERVINARROW[1] NONE[0]	eck ONE in each category for E/ L R FLOOD PLAIN QU S FOREST, SWAMP[3] SHRUBOR OLD FIELD FINCED PASTURE [1] OPEN PASTURE, ROW	IALITY IALITY [2] IEW FIELD [1] Indica Indica past 1	er bank & average)	AGE [1] AL [0] TION [0]
5] POOL/GLIDE AND A MAXIMUM DEPTH Oreck ONE (ONLY!) > > Im[6] 0.7 - < Im[4] 0.4 - <0.7m[2] 0.2 - <0.4m[1] < 0.2m[0] [metric=0] Comments	RIFFLE/RUN QUALIT CHANNEL WIDTH Oreck ONE (Or 2 & average) POOL WIDTH > RIFFLE WI POOL WIDTH = RIFFLE WI	CURRENT V Check ALL 1 DTH[2] TORRENTIAL[-1 DTH[1] VERV FAST[1] DTH[0] FAST[1] MODDERATE[1] Indicate for reach	VELOCITY hat apply SLOW[1] INTERMIN EDOIES[1 - pools and riffle	Recreation Pote (Circle one and common X Primary Con TIAL [-1] Secondary C TIENT [-2] Pool/] Current s. Maximum 12	ential ent on tack) text instact
Indicate for functional riffles of riffle-obligate species: RIFFLE DEPTH BEST AREAS > 10om[2] BEST AREAS > 10om[1] BEST AREAS < 5 om [metric = 0] Comments 6] GRADIENT (true	Best areas must be large en RUN DEPTH MAXDMUM > 50cm [2] MAXDMUM < 50cm [1]	Cough to support a population Check ONE RIFFLE/RUN SUBSTRA STABLE(e.g., Cobbie, Bould MDD.STABLE(e.g., Large G UNSTABLE(e.g., Fine Grave LOW [2-4] % POOL: [6-10]	(0r 2 & average) TE RIFFL er)[2] % iravel)[1] [4 Sand)[0] [760 %GL	NORIFLE [metric E/RUN EMBEDDEDNI NONE[2] LOW[1] Riffle/ MODERATE[0] Run EXTENSIVE[-1] Maximum 8 IDE: O Gradient Maximum	5

2016 Reference Site Monitoring WP B-030-OWQ-WAP-PRB-16-W-R0 Date: December 28, 2016

Attachment 7 (continued). IDEM OWQ Biological QHEI (back).

42

L SILE #	Event ID	Stream Name	Location	County Surveyor
		BIGWALNOTCH.	NEAR BRAZIL	CLAY RES HAR
Sample Date Sa	mple # M	Acro# # Containers	Macro Sample Type:	Normal
16/19/17		1	Black Light Kick	Duplicate
Habitat Comple		Quality Rejected	Hester Dendy Doualt	D Replicate
	te 🗆 sampre	e Quanty rejected	- Hester-Denuy - Quanta	auve
Riparian Zo	ne/Instre	am Features		
Watershed Erosi	on: V	Vatershed NPS Pollution:		
Heavy		No Evidence		
Moderate		Obvious Sources		
None		Some Potential Sources		
Stream Depth	Stream Depth	Pool (m):	Riffle-Riffle (m): Bend-B	ances lend (m):
Riffle (m):	Run (m):			
Riffle (m):	Run (m):	1.5	NA NI	0
Riffle (m): 0 .2 Stream Width (r	Run (m): 1. 6 n): High V	Vater Mark (m): Veloci	ty (ft/s):	Q]
Riffle (m): 1 .2 Stream Width (n 2 .5	Run (m): 1. 6 n): High V	Vater Mark (m): Veloci	ty (ft/s):	
Riffle (m): 7 . 2 Stream Width (n 7 . 2.5	Kun (m): 1. 6 n): High V	Vater Mark (m): Veloci	ty (ft/s):	
Riffle (m): 9 .2 Stream Width (n 4 2 .5 Stream Type:	Run (m): 1.0 n): High V VI Turbidity	Vater Mark (m): Veloci VK. UNI V (Est): Salin	NAN ty (ft/s): C nity (mg/L): ORP (m	Q
Riffle (m): 9.2 Stream Width (n 4.25 Stream Type: Cold Www.m	Nun (m): 1.0 n): High V Ut Turbidity Clear	Vater Mark (m): Veloci VK UNI V (Est): Slightly Turbid	NA NJ ty (ft/s): C c	Q V):
Riffle (m): 1.2 Stream Width (n 2.5 Stream Type: Cold Warm	Run (m): 1. 6 n): High V V Turbidity Clear Opaque	Vater Mark (m): Veloci VK UNI V (Est): Salin Slightly Turbid	NAN ty (ft/s): C nity (mg/L): ORP (m NA	Q V):
Riffle (m): 9.2 Stream Width (n 2.5 Stream Type: Cold Warm Channelizatio	Run (m): 1. 0 n): High V Ut Ut Clear Opaque n Dam P	Vater Mark (m): Veloci VK UN V (Est): Salin Slightly Turbid Turbid Present	NAN ty (ft/s): C nity (mg/L): ORP (m NA	Q V):

Attachment 6. IDEM OWQ Macroinvertebrate Header Form.

Sediment Odors: X Normal Sewage Petroleum Chemical Anaerobic None	Other	
Sediment Deposits: Sludge Sawdust Paper Fiber X Sand Relic Shells Other		
Sediment Oils: Absent O Moderate Profuse O Slight		_

Are the undersides of stones, which are not deeply embedded, black?

Substrate Components

(Note: Select from 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% for each inorganic/ organic substrate component)

	Inorgan	nic Substrate C	iomponents (%	Diameter)	
Bedrock	Boulder (>10 in)	Cobble (2.5-10 in)	Gravel (0.1-2.5 in)	Sand (gritty)	Silt	Clay (slick)
0	0	0	60	30	10	

Organic Substrate Components (% Type)				
Detritus (sticks, wood)	Detritus (CPOM)	Muck/Mud (black, fine FPOM)	Marl(gray w/ shell fragments)	
6	0	0	0	

Water Quality

Water Odors: Normal Sewage Petroleum Chemical None Other Water Surface Oils: Slick Sheen Glob Flocks X None

IDEM 03/14/13

Wetland Delineation Report

CHRISTOPHER B. BURRKE ENGINEERING, LLC

Big Walnut Creek Wetland Delineation Report Putnam County, IN | April 2017

TABLE OF CONTENTS

Exec	utive S	Summary	2
1.0	Stud	ly Area	3
2.0	Meth	nodology	3
	2.1	Wetland Determination Methodology	3
	2.2	Stream Methodology	5
3.0	Resu	ults and Discussions	5
	3.1	Identified Wetland Areas	5
	3.2	Non-Wetland Data Points	7
	3.3	Other Jurisdictional Waters	8
4.0	Refe	rence Materials	9
	4.1	Exhibit References	9

TABLES

Table 1: Summary of Wetlands/Waters within Project Area	
---	--

EXHIBITS

- Exhibit 1: Site Location Map
- Exhibit 2: National Wetlands Inventory (NWI) Map
- Exhibit 3: Soils Map
- Exhibit 4: Topography Map
- Exhibit 5: Digital Flood Insurance Rate Map (DFIRM)
- Exhibit 6: Delineated Wetlands/"Waters", Data Points & Photo Stations

APPENDICES

- Appendix A: Photographs
- Appendix B: Data Sheets

JURISDICTIONAL WATERS AND WETLAND DELINEATION REPORT BIG WALNUT CREEK SITE PUTNAM COUNTY, INDIANA

EXECUTIVE SUMMARY

Christopher B. Burke Engineering, LLC (CBBEL) staff conducted an onsite field investigation of the Big Walnut Creek site in Putnam County, Indiana. Field work was conducted on April 4, 2017 during which time four (4) wetlands and four (4) streams were identified onsite. Wetland delineations were conducted using methods identified in the Regional Supplement to the Corps of Engineers Delineation Manual: Midwest Region (Version 2.0) (August 2010).

Table 1 is a summary of the "waters"/wetland sites identified, including acreage or linear footage and our opinion of federal regulatory jurisdiction.

Site	Wetland/Stream Type	Acreage/Liner Footage (within project limits)	Jurisdiction
Wetland 1	Forested (PFO)	1.88 Acre	State/Federal
Wetland 2	Forested (PFO)	0.35 Acre	State/Federal
Wetland 3	Forested (PFO)	0.003 Acre	State/Federal
Wetland 4	Forested (PFO)	0.07 Acre	State/Federal
UNT 1	Perennial	401 Linear Feet	State/Federal
UNT 2		144 Linear Feet	State/Federal
UNT 3	Ephemeral	211 Linear Feet	State/Federal
UNT 4	Ephemeral	132 Linear Feet	State/Federal
Big Walnut Creek	Perennial	2,700 Linear Feet	State/Federal

Table 1: Summary of Waters/Wetlands in Project Area

1.0 STUDY AREA

On April 4, 2017, Christopher B. Burke Engineering, LLC (CBBEL) completed a Wetland/"Waters" of the U.S field investigation of the Big Walnut Creek Site in Putnam County, Indiana (**Exhibit 1**). This report was prepared to document our findings and to determine if the on-site "waters"/wetland areas are jurisdictional under Sections 404/401 of the Clean Water Act (CWA) or under current Indiana Regulations. The project site includes both banks of an approximate 2,700-foot reach of Big Walnut Creek, downstream from the US Highway 40 bridge crossing east of Brazil, Indiana. Specifically, the project is located in Sections 20 and 29, of Township 13 North, Range 5 West on the Reelsville 7.5 Minute Quadrangle Map.

Wetland/"waters" boundaries were delineated in accordance with the Midwest Region methodology established by the USACE. The delineated wetlands/"waters" and data points are shown on **Exhibit 6**. Information collected on site is listed in the attached data forms (**Appendix 2**).

2.0 METHODOLOGY

2.1 WETLAND DETERMINATION METHODOLOGY

Wetland determinations were conducted using the methodology from the *Regional Supplement to the Corps of Engineers Delineation Manual: Midwest Region (Version 2.0),* dated August 2010. The Midwest Regional Supplement identifies the mandatory technical criteria for wetland identification. The three essential characteristics of a wetland are hydrophytic vegetation, hydric soils and wetland hydrology as described below:

<u>Hydrophytic Vegetation</u>: The hydrophytic vegetation criterion is based on a separation of plants into five basic groups:

- (1) Obligate wetland plants (OBL) almost always occur (estimated probability >99%) in wetlands under natural conditions;
- (2) Facultative wetland plants (FACW) usually occur in wetlands (estimated probability 67-99%), but occasionally are found in non-wetlands;
- (3) Facultative plants (FAC) are equally likely to occur in wetlands or nonwetlands (estimated probability 34-66%);
- (4) Facultative upland plants (FACU) usually occur in non-wetlands (estimated probability 67-99%), but occasionally are found in wetlands (estimated probability 1-33%); and

(5) Obligate upland plants (UPL) almost always occur (estimated probability >99%) in non-wetlands under natural conditions.

Indicator 1 - Rapid Test for Hydrophytic Vegetation: The rapid test for hydrophytic vegetation is met if all dominant species across all strata are OBL or FACW, or a combination of the two, based on a visual assessment.

Indicator 2 - Dominance Test: If greater than 50% of the plants present are FAC, FACW, or OBL the subject area is considered to be wetland in terms of vegetation, and no further vegetation analysis is required.

Indicator 3 - Prevalence Index: This test is conducted if the plant community fails the Dominance Test, but indicators of hydric soil and wetland hydrology are both present. The Prevalence Index is a weighted-average (based on percent cover) wetland indicator status of all plant species in the sampling plot, where each indicator status category is given a numeric value (OBL=1, FACW=2, FAC=3, FACU=4, and UPL=5). If the Prevalence Index is less than or equal to 3.0, then the hydrophytic vegetation criteria has been met.

Indicator 4 - Morphological Adaptations: This test is conducted if the plant community fails the prevalence test, but indicators of morphological adaptations for life in wetlands, on otherwise upland plant species, are present. If more than 50 percent of FACU species have morphological adaptations for life in wetlands, this species is considered a hydrophyte and is re-assigned an indicator of FAC. The Dominance Test and Prevalence Test should be re-calculated, and the hydrophytic vegetation criteria is satisfied if either test is satisfied.

Hydric Soils: Hydric soils are defined in the Midwest Regional Supplement as "soils that have formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part." Field indicators include matrix color, redox depletions and concentrations, sulfate reduction and resultant odor, organic matter accumulation, gleying, and soil texture. Specific types of hydric soils in the Midwest Region include, Histosols, Sandy Soils, Muck or Peat, and Loam or Clay Soils. Within these soil groups, there are many indicators specific to each type of soil.

Wetland Hydrology: The wetland hydrology criterion is often the most difficult to determine. Typically, the presence of water for a week or more during the growing season creates anaerobic conditions. Anaerobic conditions lead to the prevalence of wetland plants and soils. In the Midwest Regional Supplement, hydrology indicators are divided into four groups; Group A. Observation of Surface Water or Saturated Soils, Group B. Evidence of Recent Inundation, Group C. Evidence of Current or Recent Soil Saturation, and Group D. Evidence from Other Site Conditions or Data. Within each group, indicators are divided into two categories, *Primary* and *Secondary*. In the absence of a primary indicator, two or more secondary indicators from any group are required to

conclude that wetland hydrology is present. Some indicators of wetland hydrology are surface water, saturation, water marks, sediment deposits, water stained leaves, drainage patterns, sulfide odor, crayfish burrows, stunted or stressed plants, or geomorphic position.

2.2 STREAM METHODOLOGY

The location of potentially jurisdictional channels was determined using the Putnam County Soil Survey, the USGS Quadrangle Map, and aerial photography. An onsite evaluation determined if additional channels, not shown on any existing mapping, were present within the project limits. There were several jurisdictional streams documented.

3.0 RESULTS AND DISCUSSION

3.1 IDENTIFIED WETLAND AREAS

Wetland Site 1 (DP 2 & 3): Wetland Site 1 is a large concave bowl shaped area found along the western bank of Big Walnut Creek within the project limits. This forested wetland (PFO) is approximately 1.88 acre in size. Dominant vegetation consists of silver maple (*Acer saccharinum*, FACW, American sycamore (*Platanus occidentalis*, FACW, eastern cottonwood (*Populus deltoides*, FAC), garlic mustard (*Allaria petolata*, FAC), bluntleaf bedstraw (*Galium obtusum*, FACW), stinging nettle (*Urtica dioica*, FACW), and wingstem (*Verbesina alternifolia*, FACW). Hydrology for this wetland includes saturation at the surface, water marks, sparsely vegetated concave surface, water-stained leaves, drainage patterns, geomorphic position, and the FAC-neutral test.

Soil sampled for Wetland Site 1 is a clay loam with a matrix color of 10YR 4/2 and a redox concentration of 10YR 6/8. The soil mapped for this area is Stonelick Sandy Loam (Sw). The boundaries of Site 1 are defined by change in topography to the north, south, east, and west.

Wetland Site 1 is adjacent to and drains to Big Walnut Creek. This stream should be considered a "water of the U.S.", and it is our opinion that Wetland Site 1 would fall under the jurisdiction of the US Army Corps of Engineers (USACE), if impacted. Final jurisdictional determination must be made by the USACE. The State of Indiana retains jurisdiction over isolated wetlands and would need to be notified prior to any work in the wetland if it is determined to be outside of federal jurisdiction.

Wetland Site 2 (DP 3): Wetland Site 2 is a large saturated area found along the east bank within the northern portion of the project limits. This forested wetland (PFO) is approximately 0.35 acre in size. Dominant vegetation consists box elder (*Acer negundo*, FAC), silver maple (FACW), eastern cottonwood (FAC), riverbank wild-rye (*Elymus riparius*, FACW), and wingstem (FACW). Hydrology for this wetland includes up to 12-inches of standing water, saturation at the surface, water marks, geomorphic position, and the FAC-neutral test.

Soil sampled for Wetland Site 2 is a clay/sand loam mix with a matrix color of 10YR 4/1 from 0-3 inches and 10YR 4/4 from 3-20 inches. The soil mapped for this area is Shoals Silt Loam (Sh). The boundaries of Site 2 are defined by a change in topography to the north and a change in hydrology to the south, east, and west.

Wetland Site 2 is adjacent to Big Walnut Creek. This stream should be considered a "water of the U.S.", and it is our opinion that Wetland Site 2 would fall under the jurisdiction of the US Army Corps of Engineers (USACE), if impacted. Final jurisdictional determination must be made by the USACE. The State of Indiana retains jurisdiction over isolated wetlands and would need to be notified prior to any work in the wetland if it is determined to be outside of federal jurisdiction.

Wetland Site 3 (DP 7): Wetland Site 3 is a saturated area found south of Wetland Site 2. This forested wetland (PFO) is approximately 0.003 acre in size and extends east outside of the project limits. Dominant vegetation consists of American sycamore (FACW), American elm (*Ulmus Americana*, FACW), riverbank wild-rye (FACW), and bluntleaf bedstraw (FACW). Hydrology for this wetland includes up to 3-inches of standing water, saturation at the surface, water-stained leaves, geomorphic position, and the FAC-neutral test.

Soil sampled for Wetland Site 3 is a clay loam with a matrix color of 10YR 4/1 and a redox concentration of 7.5YR 5/8. The soil mapped for this area is Stonelick Sandy Loam (Sw). The boundaries of Site 3 are defined by change in hydrology to the north, south, east, and west.

Wetland Site 3 is adjacent to and connected via Unnamed Tributary (UNT) 3 to Big Walnut Creek. These streams should be considered "waters of the U.S.", and it is our opinion that Wetland Site 3 would fall under the jurisdiction of the US Army Corps of Engineers (USACE), if impacted. Final jurisdictional determination must be made by the USACE. The State of Indiana retains jurisdiction over isolated wetlands and would need to be notified prior to any work in the wetland if it is determined to be outside of federal jurisdiction.

Wetland Site 4 (DP 8): Wetland Site 4 is a saturated area located south of Wetland Site 3 within the project limits. This forested wetland (PFO) is approximately 0.07 acre in size. Dominant vegetation consists of box elder (FAC), sedge species (*Carex spp.*, FACW), riverbank wild rye (FACW), and wingstem (FACW). Hydrology for this wetland includes up to 3-inches of standing water, saturation at the surface, drainage patterns, geomorphic position, and the FAC-neutral test

Soil sampled for Wetland Site 4 is a clay loam with a matrix color of 10YR 4/1 and a redox concentration of 7.5YR 5/8. The soil mapped for this area is

Stonelick Sandy Loam (Sw). The boundaries of Site 4 are defined by change in hydrology to the north, south, east, and west.

Wetland Site 4 is adjacent to and connected via UNT 4 to Big Walnut Creek. These streams should be considered "waters of the U.S.", and it is our opinion that Wetland Site 4 would fall under the jurisdiction of the US Army Corps of Engineers (USACE), if impacted. Final jurisdictional determination must be made by the USACE. The State of Indiana retains jurisdiction over isolated wetlands and would need to be notified prior to any work in the wetland if it is determined to be outside of federal jurisdiction.

3.2 NON-WETLAND DATA POINTS

Data Point 1: Data Point 1 is located within a forested area along the west bank of Big Walnut Creek north of UNT 1. Vegetation at this data point consists of box elder (FAC), Ohio Buckeye (*Aesculus glabra*, FAC), American sycamore (FACW), eastern cottonwood (FAC), riverbank wild-rye (FACW), bluntleaf bedstraw (FACW), stinging nettle (FACW), and wingstem (FACW). The soil at this site has a matrix color of 10YR 4/3 and did not exhibit any redox concentrations. This area exhibited one secondary indicator of wetland hydrology; therefore, this data point does not qualify as wetland.

Data Point 4: Data Point 4 is located along the west bank of Big Walnut Creek south of Wetland Site 1. Vegetation at this data point consists of silver maple (FACW), Kentucky blue grass (*Poa pratensis*, FAC), and meadow fescue (*Schedonorus pratensis*, FACU). The soil at this site has a matrix color of 10YR 4/3 and did not exhibit any redox concentrations. This area exhibited one secondary indicator of wetland hydrology; therefore, this data point does not qualify as wetland.

Data Point 5: Data Point 5 is located within a forested area along the east bank of Big Walnut Creek south of UNT 2. Vegetation at this data point consists of Ohio Buckeye (FAC), American sycamore (FACW), eastern cottonwood (FAC), stinging nettle (FACW), and wingstem (FACW). The soil at this site has a matrix color of 10YR 4/3 and did not exhibit any redox concentrations. This area exhibited one secondary indicator of wetland hydrology; therefore, this data point does not qualify as wetland.

Data Point 9: Data Point 9 is located within a forested area along the east bank of Big Walnut Creek south of Wetland Site 4. Vegetation at this data point consists of box elder (FAC), silver maple (FACW), eastern cottonwood (FAC), Virginia waterleaf (*Hydrophyllum virginianum*, FAC), and wingstem (FACW). The soil at this site has a matrix color of 10YR 4/3 and did not exhibit any redox concentrations. This area exhibited one secondary indicator of wetland hydrology; therefore, this data point does not qualify as wetland.

Data Point 10: Data Point 10 is located within a forested area along the east bank of Big Walnut Creek south of Data Point 9. Vegetation at this data point consists of box elder (FAC), Ohio buckeye (FAC), eastern cottonwood (FAC), roverbank wild rye (FACW), Virginia waterleaf (FAC), and wingstem (FACW). The soil at this site has a matrix color of 10YR 3/3 and did not exhibit any redox concentrations. This area exhibited one secondary indicator of wetland hydrology; therefore, this data point does not qualify as wetland.

3.3 OTHER JURISDICTIONAL WATERS

Big Walnut Creek....

UNT 1 is a perennial stream that flows east through the site. The Ordinary High Water Mark (OHWM) of the channel was measured at approximately 1.5-foot above the bed of the channel. The channel width was approximately 10 feet wide within the project limits. Dominant substrates include silt, gravel, artificial concrete, and brick.

UNT 2 is an intermittent stream that flows west along US Highway 40. The Ordinary High Water Mark (OHWM) of the channel was measured at approximately 12-inches above the bed of the channel. The channel width was approximately 2.5 feet wide within the project limits and the dominant substrate is mud, silt, and sand.

UNT 3 is an ephemeral tributary that flows west from Wetland Site 3. The Ordinary High Water Mark (OHWM) of the channel was measured at approximately 6-inches above the bed of the channel. The channel width was approximately 1.5 feet wide within the project limits and the dominant substrates consist of detritus, silt, and sand.

UNT 4 is an ephemeral tributary that flows west through Wetland Site 4. The Ordinary High Water Mark (OHWM) of the channel was measured at approximately 6-inches above the bed of the channel. The channel width was approximately 2 feet wide within the project limits and the dominant substrates consist of silt and sand.

UNT 1, 2, 3, and 4 flow into Big Walnut Creek within the project limits. It is our opinion that these streams should be considered "Waters of the U.S." and, therefore, under federal jurisdiction. Any work within the channel will require Clean Water Act approval from the USACE and the IDEM. Additionally, an IDNR Construction in a Floodway permit will be required if there is any work within regulatory floodway.

4.0 **REFERENCE MATERIALS**

4.1 EXHIBIT REFERENCES

The following reference materials were reviewed and used to assist in the "Waters"/Wetland field reconnaissance. They are included as Exhibits 1-6.

EXHIBIT 1 – Site Location Map

The project site includes both banks of an approximate 2,700-foot reach of Big Walnut Creek, downstream from the US Highway 40 bridge crossing east of Brazil, Indiana. Specifically, the project is located in Sections 20 and 29, of Township 13 North, Range 5 West on the Reelsville 7.5 Minute Quadrangle Map.

EXHIBIT 2- National Wetlands Inventory Map

The National Wetland Inventory (NWI) does indicate several wetlands within the project limits; however, the NWI serves only as a large-scale guide; actual wetland locations and types often vary from that mapped. The NWI map may also predate the development of the subject wetland.

EXHIBIT 3 – Soils Map

The Soil Survey of Putnam County, Indiana (1971) was reviewed to determine the location of hydric soils on site. Mapped hydric soil can be indicative of wetland conditions. Sholas Silt Loam (Sh) and Stonelick Sandy Loam (Sw) are mapped throughout the project limits and are not considered a hydric soils.

EXHIBIT 4 – Topography Map

U.S.G.S. 7.5-Minute Quadrangle Map, Reelsville, 1997 was reviewed to determine the local drainage pattern. The map indicates relatively flat throughout the majority of the project limits.

<u>EXHIBIT 5 – DFIRM</u>

The Digital Flood Insurance Rate Map (DFIRM), Effective, June 5, 2017, was reviewed to determine the location of floodplain or floodway within the study area. Mapped floodplains can be indicative of wetland hydrology. The FIRM indicates Unnumbered Zone A throughout the project limits.

EXHIBIT 6 – Delineated Wetlands/"Waters", Data Points & Photo Stations

The aerial photograph of the site was reviewed to determine drainage patterns and identify poorly drained areas, or note changes in vegetation. The data points and photo stations are overlaid on the aerial photograph.

Applicant/Owner: UPUI	Project/Site: Big Walnut Creek- Wetland Delineation	City	County: Brazil/Put	nam	Sampling Date: 4/4/17				
Investigator(s): Sarah Wright; Jamie Furgason Section, Township, Range: Section 20, Township 13 North, Range 5 West Landform (Initiation, Initiation, Initiste, Initinine, Initiation, Initiation, Initiatine, Initiation,	Applicant/Owner: IUPUI			State: IN	Sampling Point: DP1				
Landom (hilalope, terrae, etc.): Local relief (concave, convex, none): Stope (%): Lat: 39.5498 Local relief (concave, convex, none): MORE Stope (%): Lat: 39.5498 Datum, NAD83 Solid Map Unit Name:: We Stonelick Sandy Loam NW classification:: PFO1A Are Vegetation Soil Or Hydrology significantly disturbed? No (If needed, explain in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrolytic Vegetation Present? Yes No Hydrolytic Vegetation Present? Yes No Is the Sampled Area within a Wetland? Yes No Vectort Hydrologic debta 20 Yes FAC No Concernation of the sector Hydrologic debta (A) Yes No 20 Yes FAC No Concernation of the sector Hydrologic debta (A) A concerned addata 20 Yes FAC No Concernation of the sector Hydrologic debta (A) A concerned addata 20 Yes FAC No Concernation of the sector Hydrologic debta 1. Accr negundo 20 Yes FAC No Concernation of the sector Hy	Investigator(s): Sarah Wright; Jamie Furgason	Sec	tion. Township. Rar	nge: Section 20, Townshi	ip 13 North, Range 5 We	st			
Stope (%) Lat: 39448 Long: -86.9848 Datum: NAD83 Soli Map Unit Name: Sw: Stonelick Sandy Loam NWI classificators: FPC1A Are climatic / hydrologic conditions on the site hybrical for this time of year? Yes No (ff no.explain in Remarks.) Are Vegetation Soli () or Hydrology naturally problematic? Ne "Normal Circumstances" present? No SUMMARY OF FINDINCS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophylic Vegetation Present? Yes No is the Sampled Area within a Wetland? Yes No (ff needed, explain any answers in Remarks.) VEGETATION - Use scientific names of plants. Is the Sampled Area within a Wetland? Yes No (A) 1. Acter negundo 20 Yes FAC (A) (A) 2. Aesculus glabra 20 Yes FAC (B) Prevalence Index worksheet: (A) 1. Acter negundo 20 Yes FAC (B) Prevalence Index worksheet: (B) 2. Aesculus glabra 20 Yes FAC (B) Prevalence Index worksheet: (A) 1. Acter negundo 20 Yes FAC <	Landform (hillslone terrace etc.):	000	l ocal relief (concave convex none).	none				
Worker (N) Note 1 output the second status of the second the second status of the second state status of the s	Slope (%):	Lon			Datum: NAD83				
San Map Out Not Reames Out Not Reamands No (No (No <td< td=""><td>Colored Values And Stopelick Sandy Loam</td><td> LON</td><td>g. <u>00.0010</u></td><td></td><td></td><td></td></td<>	Colored Values And Stopelick Sandy Loam	LON	g. <u>00.0010</u>						
Are climated / hydrologic conditions on the set bytical for this time of year? Yes No (If no, explain in Hearters) Are Vegetation Soll or Hydrology haturally problematic? Are "Normal Circumstances" present? Yes No No SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No Is the Sampled Area within a Wetland? No									
Are Vergetation Soil or Hydrology significantly disturbed? Are Normal Circumstance? present? Yes No Are Vegetation Soil or Hydrology naturally problematic? (if needed, explain any answers in Remarks.) SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No Is the Sampled Area within a Wetland? No No No Wetland Hydrology Present? Yes No No Is the Sampled Area within a Wetland? No No No Vetland Hydrology Present? Yes No O Is the Sampled Area within a Wetland? No O Vetland Hydrology Present? Yes No O Is the Sampled Area within a Wetland? Number of Dominant Species 1 Accorn and Stratum O Yes FAC Number of Dominant Species Int Are OBL, FACW, or FAC: (A) 1 Accorn and Stratum O Fac Total Number of Dominant Species Int Are OBL, FACW, or FAC: (A) (A) 2 Mathemation and Species Statum (Ported Stratum (Plot size: 15ft.) (A) <t< td=""><td>Are climatic / hydrologic conditions on the site typical for this</td><td>time of year?</td><td>Yes <u> </u></td><td>(If no, explain in Re</td><td>marks.)</td><td>\sim</td></t<>	Are climatic / hydrologic conditions on the site typical for this	time of year?	Yes <u> </u>	(If no, explain in Re	marks.)	\sim			
Are Vegetation, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? Yes No is the Sampled Area Wetland Hydrology Present? No is the Sampled Area Wetland Hydrology Present? No is the Sampled Area Sampled Statum (Plot size: 15ft) Method Mydrology Present Sampled Area Sampled Statum (Plot size: 5ft) Method Sampled Area Wedey Vine Stratum (Plot size: 5ft No	Are Vegetation, Soil, or Hydrology sig	gnificantly distu	urbed? Are "	Normal Circumstances" pr	esent? Yes 💽 No	$\mathbf{O}_{\mathbf{O}}$			
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Hydrophylic Vegetation Present? Yes No Yetin: Sol Present? Yes No Weland Hydrology Present? Yes No Is the Sampled Area within a Wetland? No Weland Hydrology Present? Yes No Is the Sampled Area within a Wetland? No Is the Sampled Area within a Wetland? No Remarks: Is the Sampled Area within a Wetland? Yes No Is Is VEGETATION – Use scientific names of plants. Indicator % Cover Species? Statu Indicator Indicator (A) 1 Ascrutus diabra 20 Yes FAC FAC Species Areas All Strata: 6 (B) 2 Yes FAC Species Area (A) Total Number of Dominant Species That Are OBL, FAC/W, or FAC: 100 (A) 2 Yes FAC Species x1 = (B) FAC/W Prevalence Index worksheet: 10 (A) (AB) 1 Yes FAC Species x2 = (A) (B	Are Vegetation, Soil, or Hydrology na	aturally problem	natic? (If ne	eded, explain any answer	s in Remarks.)				
Hydrochydic Vegetation Present? Yes No Is the Sampled Area within a Wetland Hydrology Present? Wetland Hydrology Present? Yes No Is the Sampled Area within a Wetland? Yes No Remarks: <td colspan="9">SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.</td>	SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.								
VEGETATION – Use scientific names of plants. Tree Stratum (Plot size: 30ft	Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: Yes No		ls the Sampled within a Wetlan	Area d? Yes	No				
Tree Stratum (Plot size: 30ft. Absolute Dominant Indicator Secores Ominant Indicator Secores Ominant Species 1. Acer negundo 20 Yes FAC 2. Aesculus glabra 20 Yes FAC 3. Platanus occidentalis 30 Yes FAC 4. Populus deltoides 30 Yes FAC 5.	VEGETATION – Use scientific names of plants.								
Tree stratum (Plot size: 5dt) 9, Cover Species? Status 1. Acer negundo 20 Yes FAC 3. Platanus occidentalis 30 Yes FAC 3. Platanus occidentalis 30 Yes FAC 4. Populus deltoides 30 Yes FAC 5		Absolute Do	minant Indicator	Dominance Test works	heet:				
1 20 20 20 20 100 <td><u>Tree Stratum</u> (Plot size: <u>solit</u>)</td> <td>20 Ye</td> <td>s FAC</td> <td>Number of Dominant Sp</td> <td>ecies</td> <td></td>	<u>Tree Stratum</u> (Plot size: <u>solit</u>)	20 Ye	s FAC	Number of Dominant Sp	ecies				
2. declarus gradua 20 103 103 104 104 105 100 100 100 100 100 100 100 100 100 100 100 (A/B) Sapling/Shrub Stratum (Plot size: 15ft. 100 = Total Cover 100 = Total % Cover of: Multiply by: (A/B) 1. 100 = Total Cover 100 = Total % Cover of: Multiply by: (A/B) 2. 100 = Total Cover FACW species x 1 = FACW species x 2 = 100 (A/B) 3. 100 = Total Cover FACW species x 4 = 100 (A/B) (A/B) 2. 100 = Total Cover FACW species x 4 = 100 (A/B) (B/B) 3. 10 No FACW Species x 3 = 100 (A/B) (B/B) 4. 10 No FACW Species x 4 = 100 (A/B) (B/B) 2. Galium obtusum 10 No FACW Species x 5 = (B/B) (Column Totals: 0)	1. Acei negulido	20 Ve		That Are OBL, FACVV, o	((A)			
3. Index In	2. Aesculus glabra	20 Te	FACW	Total Number of Domina	int				
Percent of Dominant Species 5. Sapling/Shrub Stratum (Plot size: 15ft.) 1. 2. 3. 4. 5. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 11. 10. 11. 11. 12. 13. 14. 15. 16. 17. 18. 19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 11. 12. 13. 14. Verbesina alternifolia 10.	Populus deltoides	30 Ye	FAC	Species Across All Strat	a: <u>b</u> ((B)			
Sapling/Shrub Stratum (Plot size: 15ft) 100 = Total Cover Inat Are OBL, FACW, of FAC: 100 (Abs) Sapling/Shrub Stratum (Plot size: 15ft) 100 = Total Cover Prevalence Index worksheet: 1. OBL species X 1 = 3. OBL species X 1 = 4. FAC species X 3 = 5. FAC species X 4 = 1. Elymus riparius 5 No FACW Prevalence Index = B/A = 2. Galium obtusum 10 No	5	<u> </u>		Percent of Dominant Sp	ecies				
Sapling/Shrub Stratum (Plot size: 15ft.) Image: 15ft. delta constraints of the second s		100 = T	otal Cover	That Are OBL, FACVV, o	((A/B)			
1.	Sapling/Shrub Stratum (Plot size: 15ft.)			Prevalence Index work	sheet:				
2. OBL species x1 = 3. OBL species x2 = 4. FACW species x3 = 5. FAC species x3 = 6. O = Total Cover 1. Elymus riparius 5 No 2. Galium obtusum 10 No FACW 9. O The species Statum 1. Elymus riparius 5 No FACW 2. Galium obtusum 10 No FACW 9. O The species Statum (B) 1. Verbesina alternifolia 30 Yes FACW 1. Neodoca 30 Yes FACW 2. Column Totals: O (A) (B) 3. Urtica dioica 30 Yes FACW 4. Verbesina alternifolia 30 Yes FACW 5. O O Prevalence Index is \$3.0^1 Incentarias or on a separate sheet) 9. O O Total Cover Problematic Hydrophytic Vege	1			Total % Cover of:	Multiply by:	.			
3.	2			OBL species	x 1 =				
4.	3			FACW species	x 2 =				
5. 0 = Total Cover Herb Stratum (Plot size: 5ft. 0 = Total Cover 1. Elymus riparius 5 No FACU 2. Galium obtusum 10 No FACW 3. Urtica dioica 30 Yes FACW 4. Verbesina alternifolia 30 Yes FACW 5. 30 Yes FACW 1. 2. Dominance Test is >50% 6. 3. Yes FACW 7. 4. Verbesina alternifolia 30 8. 9. 3. Problematic Hydrophytic Vegetation 9. 75 = Total Cover Problematic Hydrophytic Vegetation 1 (Explain) 10. 75 = Total Cover Hydrophytic vegetation 2. 0 = Total Cover Hydrophytic Yes No	4	·		FAC species	x 3 =				
Herb Stratum (Plot size: $5ft.$) 0 = Total Cover UPL species x 5 = Column Totals: 0 (A) (B) 1. Elymus riparius 5 No FACW Prevalence Index = B/A = (B) 2. Galium obtusum 10 No FACW Prevalence Index = B/A = (B) 3. Urtica dioica 30 Yes FACW Hydrophytic Vegetation Indicators: (B) 4. Verbesina alternifolia 30 Yes FACW 1 - Rapid Test for Hydrophytic Vegetation 5. 1 - Rapid Test for Hydrophytic Vegetation 6. 9. 10. 9. 10. </td <td>5</td> <td></td> <td></td> <td>FACU species</td> <td> × 4 =</td> <td></td>	5			FACU species	× 4 =				
1. Elymus riparius 5 No FACW Column Totals: 0 (A) (B) 2. Galium obtusum 10 No FACW Prevalence Index = B/A = (B) 3. Urtica dioica 30 Yes FACW Hydrophytic Vegetation Indicators: (B) 4. Verbesina alternifolia 30 Yes FACW I - Rapid Test for Hydrophytic Vegetation 5. I - Rapid Test for Hydrophytic Vegetation 6. I - Rapid Test for Hydrophytic Vegetation 8. 9. 10. 9. . <t< td=""><td>Herb Stratum (Plot size: 5ft.)</td><td>= Te</td><td>otal Cover</td><td>UPL species</td><td> x 5 =</td><td></td></t<>	Herb Stratum (Plot size: 5ft.)	= Te	otal Cover	UPL species	x 5 =				
Prevalence Index = B/A = 2. Galium obtusum 10 No FACW 3. Urtica dioica 30 Yes FACW 4. Verbesina alternifolia 30 Yes FACW 5. 30 Yes FACW 6. 3 Prevalence Index is $< 50\%$ 7. 3 7 8. 4 Amorphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 9. 9 Problematic Hydrophytic Vegetation ¹ (Explain) 10. 75 = Total Cover 0 = Total Cover Hydrophytic Vegetation Present?	1 Elymus riparius	5 No	FACW	Column Totals: 0	(A)	(B)			
3. Urtica dioica 30 Yes FACW 4. Verbesina alternifolia 30 Yes FACW 5. 30 Yes FACW 6. 2 Dominance Test is >50% 7. 3 3 Prevalence Index is ≤3.0 ¹ 8. 4. A. Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 9. 75 = Total Cover 11. 75 = Total Cover 0 = Total Cover Hydrophytic Vegetation Present?	2 Galium obtusum	10 No	FACW	Prevalence Index	= B/A =				
4. Verbesina alternifolia 30 Yes FACW 1 - Rapid Test for Hydrophytic Vegetation 5. 30 Yes FACW 2 - Dominance Test is >50% 6. 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 9. Problematic Hydrophytic Vegetation ¹ (Explain) 10. 75 = Total Cover Woody Vine Stratum (Plot size: 5ft.) 1 1. 0 = Total Cover 0 = Total Cover Yes	3. Urtica dioica	30 Ye	s FACW	Hydrophytic Vegetatio	n Indicators:				
5. \checkmark \land	4. Verbesina alternifolia	30 Ye	s FACW	1 - Rapid Test for H	ydrophytic Vegetation				
6. 3 - Prevalence Index is $\leq 3.0^1$ 7. 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 9. Problematic Hydrophytic Vegetation ¹ (Explain) 10. 75 = Total Cover Woody Vine Stratum (Plot size: 5ft.) 1. 1 2. 0 0 = Total Cover	5.			🖌 2 - Dominance Test	is >50%				
7.	6.			3 - Prevalence Inde	x is ≤3.0 ¹				
8.	7			4 - Morphological A	daptations ¹ (Provide suppo	orting			
9	8			data in Remarks	or on a separate sheet)				
10. 75 = Total Cover 1 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 10. 75 = Total Cover 1 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 10. 0 = Total Cover Hydrophytic Vegetation Present? 0 = Total Cover Yes O No	9			Problematic Hydrop	hytic Vegetation' (Explain))			
Woody Vine Stratum (Plot size: 5ft.)) 75 = Total Cover 'Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 1.	10			1		,			
Image: No Image: No 1 2 0 a = Total Cover Yes	Maadu Vina Strature (Dist circu 5ft	7 <u>5</u> = T	otal Cover	Indicators of hydric soil be present, unless distu	and wetland hydrology mu rbed or problematic.	ust			
1. Hydrophytic 2. Vegetation 0 = Total Cover Present?	voody vine Stratum (Piot size: one)								
0 = Total Cover Yes No No	2			Hydrophytic Vegetation					
	£.,	0 = T	otal Cover	Present? Yes	. O No				

Remarks: (Include photo numbers here or on a separate sheet.)

S	ο	I	L
-	-	-	_

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix Redox Features (Inches) Color (moist) % Type Det 0-16 10YR 4/3 100 Sand Sand	SOIL							Sampling Point:
Depth Matrix Redox Features 0-16 10YR 4/3 100 % Type Loc* Texture Remarks 0-16 10YR 4/3 100 % Type Loc* Sand Sand 0-16 10YR 4/3 100 Sand Sand Sand Sand	Profile Desc	cription: (Describ	be to the depth	needed to docur	nent the indicator	or confirm	the absence	of indicators.)
(Inches) Color (moist) % Type: Color Type: Color Type: Color Sand 0-16 10YR 4/3 100 Sand Sand Sand	Depth	Matrix		Redo	x Features			
0-16 10YR 4/3 100 Sand	(inches)	Color (moist)	%	Color (moist)	%Type ¹	_Loc ²	Texture	Remarks
**Type:: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. **Location: PL=Pore Lining, M=Matrix, MFModel Sand Grains. **Type:: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. **Location: PL=Pore Lining, M=Matrix, MS=Masked Sand Grains. **Histic Epipedion (A2) Sandy Redox (S5) Histic Epipedion (A2) Sandy Redox (S5) Back Histic (A3) Coast Printip Redox (A16) Back Histic (A3) Coast Printip Redox (A16) Back Histic (A3) Coast Printip Redox (A16) Depleted Below Dark Surface (F1) Coast Printip Redox (A16) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Depleted Below Dark Surface (A12) Depleted Matrix (F3) G on Muck (A10) Depleted Dark Surface (F2) * Type:	0-16	10YR 4/3	100				Sand	
**Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. **Location: PL=Pore Lining, M=Matrix. **Hydric Soil Indicators: Indicators for Problematic Hydric Soils*: Indicators for Problematic Hydric Soils*: **Histosi (A1) Sandy Gleyed Matrix (S4) Cocast Prairie Redox (A16) Black Histic Epipedon (A2) Sandy Redox (S5) Cocast Prairie Redox (A16) Black Histic (A3) Damy Gleyed Matrix (F2) Other (Explain in Remarks) C and Mucky Mineral (F1) Depleted Matrix (F2) Other (Explain in Remarks) C and Mucky Mineral (S1) Depleted Matrix (F2) Other (Explain in Remarks) C and Mucky Mineral (S1) Redox Dark Surface (F7) *Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (If observed): Type:								
Image: Secondary Indicators: Image: Secondary Indicators:					· ·			
*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. *Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils*: Indicators for Problematic Hydric Soils*: Histoci (A1) Sandy Gleyed Matrix (S6) Dark Surface (S7) Black Histic (A3) Stripped Matrix (S6) Dark Surface (F12) Hydrogen Sulfide (A4) Leamy Macky Mineral (F1) Very Shallow Dark Surface (F12) Depleted Below Dark Surface (A11) Redox Dark Surface (F7) *Indicators of hydrophylic vegetation and wetland hydrology must be present, unless disturbed or problematic. Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) *Indicators (minimum of noe is required. Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) *Indicators (minimum of noe is required. Type:								
Image: Secondary Indicators: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils*: Indicators for Problematic Hydric Soils*: Indicators for Problematic Hydric Soils*: Indicators for Problematic Hydric Soils*: Indicators for Problematic Hydric Soils*: Indicators: Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators: Promer Lining, M=Matrix: Hydric Soil Present? Yes O No Indicators: Primary Indicators: Indicators: Primary Indicators: Indicators: Primary Indicators (Indicators: Indicators (Indicators: (Intimum of two required) Indicators (Intimum of one is required: check all that apply Secondary Indicators (Intimum of two required) Saturation Indicators (Intimum of one is required: check all thata								
**Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. **Location: PL=Pore Lining, M=Matrix, M=Matrix, MS=Masked Sand Grains. *Hydric Soil Indicators: Indicators for Problematic Hydric Soils*: Histosci (A1) Sandy Gleyed Matrix (S4) Black Histic (A3) Singped Matrix (S6) Black Histic (A3) Strateged Matrix (S6) Data Surface (A1) Depleted Matrix (S6) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) *Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (If observed): Type: Type: Depleted Dark Surface (F7) Brink (Inches): Hydric Soil Present? Yes No Perimary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Quadic Fauna (B13) Dry-Season Water Table (C2) Saturation (A3) Tube Aquatic Plants (B14) Dry-Season Water Table (C2) Sutrace Water (A1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Saturation (A3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation (A3) D								
*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. *Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils*: Indicators for Problematic Hydric Soils*: Histic Epidedon (A2) Sandy Redox (S5) Dark Surface (S7) Hydrogen Suffie (Aye) Loamy Gleyed Matrix (S6) Dark Surface (S7) Stratifie Layers (A5) Loamy Gleyed Matrix (F2) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Redox Dark Surface (F7) *Indicators of hydrophytic vegetation and wetlan hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:					· ·			
*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. *Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators (A1)								
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. *1_ccation: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils*: Histosci (A1) Sandy Gleyed Matrix (S4) Coast Praine Redox (A16) Histosci (A1) Sandy Redox (S5) Dark Surface (S7) Black Histic (A3) Stripped Matrix (S6) Dorn-Manganese Masses (F12) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F3) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Perleted Matrix (F3) Back Misci (S1) Depleted Dark Surface (F7) *Indicators of hydrophytic vegetation and welland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:								
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ¹ : Histoscol (A1) Sandy Gleyed Matrix (S4) Coast Prairie Redox (A16) Histic Explexion (A2) Sandy Redox (S5) Dark Surface (S7) Black Histic (A3) Loamy Mucky Mineral (F1) Very Shallow Dark Surface (F12) Yery Shallow Dark Surface (A10) Depleted Matrix (F2) Other (Explain in Remarks) Depleted Dark Surface (A12) Redox Dark Surface (F6) Depleted Dark Surface (F7) Stratified Layers (A5) Depleted Dark Surface (F7) and sufface (F7) Trick Dark Surface (A12) Redox Depressions (F8) unless disturbed or problematic. Restrictive Layer (if observed): Type: pepth (Inches): No • Type: Depleted Dark Surface (F1) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Water (A1) Water Stained Leaves (B13) Dry-Season Water Table (A2) Aquatic Fauna (B13) Dry-Season Water Table (C2) High Water Table (A2) Aquatic Fauna (B13) Dry-Season Water Table (C2) Crafish Burrows (C8) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) <td>¹Type: C=C</td> <td>oncentration D=D</td> <td>epletion RM=Re</td> <td>duced Matrix MS</td> <td>S=Masked Sand Gr</td> <td>ains</td> <td>²Location</td> <td>PI = Pore Lining M=Matrix</td>	¹ Type: C=C	oncentration D=D	epletion RM=Re	duced Matrix MS	S=Masked Sand Gr	ains	² Location	PI = Pore Lining M=Matrix
Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prairie Redox (A16) Histic Epipedon (A2) Sandy Redox (S5) Dark Surface (S7) Black Histic (A3) Stripped Matrix (S6) Dark Surface (S7) Hydrogen Sulfide (A4) Loarny Mucky Mineral (F1) Very Shallow Dark Surface (TF12) Stratified Layers (A5) Depleted Matrix (F3) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Redox Dark Surface (F7) andicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (If observed): Type:	Hydric Soil	Indicators:		duood matrix, m			Indicators	for Problematic Hydric Soils ³ :
Instact (YI) Image: Sandy Redox (S5) Image: Sandy Redox (S5) Image:		(A1)			Sleved Matrix (S4)		Coast I	Prairie Redox (A16)
Black Histic (A3) Stripped Matrix (S6) Iton-Manganese Masses (F12) Hydrogen Suffice (A4) Loamy Mucky Mineral (F1) Very Shallow Dark Surface (TF12) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Explain in Remarks) 2 cm Muck (A10) Depleted Dark Surface (F6) Thick Dark Surface (A12) Depleted Dark Surface (F7) 3 Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Pepleted Matrix (F3) No Depleted Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Hydric Soil Present? No YDRCLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Flants (B14) Dry-Season Water Table (C2) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Staturation (K8) Oxidized Rhizospheres on Living Roots (nipedon (A2)		Sandy E	Redox (S5)		Dark S	urface (S7)
Hydrogen Sulfide (A4) □ Laamy Mucky Mineral (F1) □ Very Shallow Dark Surface (TF12) □ Stratified Layers (A5) □ Depleted Matrix (F2) □ Other (Explain in Remarks) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F3) □ Depleted Matrix (F3) □ Depleted Below Dark Surface (A12) □ Depleted Dark Surface (F6) □ Thick Dark Surface (A12) □ Depleted Dark Surface (F7) □ Sandy Mucky Mineral (S1) □ Redox Dark Surface (F7) □ and surface (F8) unless disturbed or problematic. Restrictive Layer (if observed): Type:	Black H	istic (A3)			Matrix (S6)		Iron-Ma	anganese Masses (F12)
Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Explain in Remarks) 2 cm Muck (A10) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) 1 Thick Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (If observed): Type:	Hydroge	en Sulfide (A4)		Loamy I	Mucky Mineral (F1)		Very S	hallow Dark Surface (TF12)
2 cm Muck (A10) □ Depleted Below Dark Surface (A11) □ Redox Dark Surface (F6) □ Thick Dark Surface (A12) □ Depleted Dark Surface (F7) ³Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Stratifie	d Layers (A5)		Loamy (Gleyed Matrix (F2)		Other (Explain in Remarks)
□ Depleted Below Dark Surface (A12) □ Pepleted Dark Surface (F7) ³Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Sandy Mucky Mineral (S1) □ Redox Depressions (F8) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	2 cm Mu	uck (A10)		Deplete	d Matrix (F3)			
☐ Thick Dark Surface (A12) ☐ Depleted Dark Surface (F7) ³Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Deplete	d Below Dark Surf	ace (A11)	Redox [Dark Surface (F6)			
Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed):	Thick Da	ark Surface (A12)		Deplete	d Dark Surface (F7))	³ Indicators	of hydrophytic vegetation and
□ 5 cm Mucky Peat or Peat (S3) unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:	D Sandy N	lucky Mineral (S1))	Redox [Depressions (F8)		wetland	l hydrology must be present,
Restrictive Layer (if observed): Type: Type:	📃 5 cm Μι	ucky Peat or Peat	(S3)				unless	disturbed or problematic.
Type:	Restrictive	Layer (if observe	d):					
Depth (inches): Hydric Soil Present? Yes No Remarks: HyDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Other (Explain in Remarks) Intervariance:	Туре:			_				
Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	Depth (in	ches):					Hydric Soil	Present? Yes 🕖 No 🕑
HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) □ Surface Water (A1) □ Water-Stained Leaves (B9) □ Surface Soil Cracks (B6) □ High Water Table (A2) □ Aquatic Fauna (B13) □ Drainage Patterns (B10) □ Saturation (A3) □ True Aquatic Plants (B14) □ Dry-Season Water Table (C2) □ Water Marks (B1) □ Hydrogen Sulfide Odor (C1) □ Crayfish Burrows (C8) □ Sediment Deposits (B2) □ Oxidized Rhizospheres on Living Roots (C3) □ Saturation Visible on Aerial Imagery (C9) □ Drift Deposits (B3) □ Presence of Reduced Iron (C4) □ Stunted or Stressed Plants (D1) □ Algal Mat or Crust (B4) □ Recent Iron Reduction in Tilled Soils (C6) □ Geomorphic Position (D2) □ Iron Deposits (B5) □ Thin Muck Surface (C7) □ FAC-Neutral Test (D5) □ Inundation Visible on Aerial Imagery (B7) □ Gauge or Well Data (D9) □ FAC-Neutral Test (D5)	Remarks:							
HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Inondation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Image and the concave Surface (B8)								
HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Field Observations:								
HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Eield Observationes: Other (Explain in Remarks) Imagery C9)								
HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Inon Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Field Observations:								
HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Innundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Image Patterns (D1)								
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Inon Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Fad Observations:	HYDROLO	GY						
Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Inon Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) FAC-Neutral Test (D5) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Field Observations:	Wetland Hy	drology Indicator	's:					
Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Prift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Inon Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	Primary Indi	cators (minimum o	f one is required	check all that an	(vla		Seconda	ry Indicators (minimum of two required)
High Water Table (A2) Aquatic Fauna (B13) Drainage Patterns (B10) Saturation (A3) True Aquatic Plants (B14) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	Surface	Water (A1)		Water-Stai	ined Leaves (B9)			ace Soil Cracks (B6)
Image Patterns (B10) Image Patterns (B10) Saturation (A3) Image Patterns (B10) Water Marks (B1) Image Patterns (B14) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Drift Deposits (B3) Image Patterns (B10) Algal Mat or Crust (B4) Image Patterns (B10) Iron Deposits (B5) Image Patterns (B10) Iron Deposits (B5) Image Patterns (B10) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)		water $(A1)$			auna (B13)			nage Batterns (B10)
Image: Solution (AC) Image: Aquatic Praints (B14) Image: Diverse Solution (AC) Image: Water Marks (B1) Image: Hydrogen Sulfide Odor (C1) Image: Crayfish Burrows (C8) Image: Solution Deposits (B2) Image: Oxidized Rhizospheres on Living Roots (C3) Image: Solution Visible on Aerial Imagery (C9) Image: Drift Deposits (B3) Image: Presence of Reduced Iron (C4) Image: Solution Visible on Aerial Imagery (C9) Image: Iron Deposits (B5) Image: Thin Muck Surface (C7) Image: FAC-Neutral Test (D5) Image: Innundation Visible on Aerial Imagery (B7) Image: Gauge or Well Data (D9) Image: Solution Visible on Aerial Imagery (B8) Image: Solution Solution Concave Surface (B8) Image: Other (Explain in Remarks) Image: Concave Surface (C7) Image: Concave Surface (C7)		$(\Delta 2)$			tic Plants (B14)			Season Water Table (C2)
Water Marks (B1) Hydrogen Sunde Odd (C1) Craynsh Burrows (C3) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)					Sulfide Oder (C1)			tigh Burrows (C2)
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)		at Denesite (B2)				ing Dooto		visit Burrows (Co)
Child Deposits (B3) Presence of Reduced iron (C4) Stunded of Stressed Plants (D1) Stu		nt Deposits (B2)			Anizospheres on Liv	ing Roots (tadion Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4) Recent from Reduction in Tilled Solis (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Factor (Explain in Remarks)				Presence	of Reduced Iron (C4	+) - 0 - - (00		ited of Stressed Plants (D1)
Iron Deposits (B5) Inin Muck Surface (C7) ✓ FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)		at or Crust (B4)				a Solis (Cb		morphic Position (D2)
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)		bosits (B5)			Surface (C7)		IV FAC	-Neutral Test (D5)
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Field Observations:	Inundati	on Visible on Aeria	al Imagery (B7)	Gauge or	Well Data (D9)			
Field Observations:	Sparsel	y Vegetated Conca	ave Surface (B8)	U Other (Exp	plain in Remarks)			
	Field Obser	vations:	\frown	0				
Surface Water Present? Yes V No V Depth (inches):	Surface Wat	er Present?	Yes 🖌 No	Depth (in	ches):	_		
Water Table Present? Yes Q No O Depth (inches):	Water Table	Present?	Yes <u> </u>	Depth (ind	ches):	_		
	Saturation P	resent?	Yes 🚺 No	Depth (ine	ches):	_ Wetla	and Hydrology	/ Present? Yes 🕖 No 🕚
	Saturation P	resent?	Yes 🕖 No	Depth (in	ches):	_ Wetla	and Hydrology	Present? Yes 🕖 No 🕑

(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Project/Site: Big Walnut Creek- Wetland Delineation	City/County: Brazil/Putnam	Sampling Date: <u>4/4/17</u>						
Applicant/Owner: IUPUI	State: _IN	Sampling Point: DP2						
Investigator(s): Sarah Wright; Jamie Furgason	Section, Township, Range: Section 20, Tov	vnship 13 North, Range 5 West						
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, no	ne): concave						
Slope (%): Lat: 39.5472	Long: <u>-86.9856</u>	Datum: NAD83						
Soil Map Unit Name: Sw- Stonelick Sandy Loam	NWI class	sification: PFO1A						
Are climatic / hydrologic conditions on the site typical for this time of	Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)							
Are Vegetation, Soil, or Hydrology significant	ntly disturbed? Are "Normal Circumstance	es" present? Yes 💽 No 💭						
Are Vegetation, Soil, or Hydrology naturally	problematic? (If needed, explain any an	swers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showi	ing sampling point locations, transe	cts, important features, etc.						
Hydrophytic Vegetation Present? Yes No								
Hydric Soil Present? Yes O No O	Is the Sampled Area							
Wetland Hydrology Present? Yes No	within a Wetland? Yes	● No ○						
Remarks:	·							

VEGETATION - Use scientific names of plants.

	Absolute	Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 501.)	% Cover	Species? Status	Number of Dominant Species
1. Acer saccharinum	30	Yes	That Are OBL, FACW, or FAC: <u>3</u> (A)
2. Platanus occidentalis	30	Yes FACW	Total Number of Dominant
3. Populus deltoides	30	Yes FAC	Species Across All Strata: 3 (B)
4.			(=,
5			Percent of Dominant Species
	90	- Total Cavar	That Are OBL, FACW, or FAC: (A/B)
Sapling/Shrub Stratum (Plot size: 15ft.)			Prevalence Index worksheet:
1.			Total % Cover of: Multiply by:
2		·	OBL species x 1 =
3			FACW species x 2 =
۵			FAC species x 3 =
		· · · · · · · · · · · · · · · · · · ·	
5		-	
Herb Stratum (Plot size: 5ft.)	J	= Total Cover	
1 Alliaria petiolata	5	No FAC	
a. Galium obtusum	5	No FACW	Prevalence Index = B/A =
	<u> </u>		Hydrophytic Vegetation Indicators:
3			1 Papid Tast for Hydrophytic Vegetation
4			
5			
6			3 - Prevalence Index is ≤3.0
7			4 - Morphological Adaptations' (Provide supporting
8			
9			
10			1
	10	= Total Cover	Indicators of hydric soil and wetland hydrology must
<u>Woody Vine Stratum</u> (Plot size: <u>5ft.</u>)			be present, unless disturbed of problematic.
1			Hydrophytic
2			Vegetation
	0	= Total Cover	Present? Yes No O
Remarks: (Include photo numbers here or on a separate s	sheet.)		

SOIL

SOIL								Sampling Point: DF2
Profile Desc	cription: (Describe	to the depth	needed to docur	nent the	indicator	or confirm	n the absence of	f indicators.)
Depth	Matrix		Redo	x Feature	s			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-16	10YR 4/2	100 1	0YR 6/8	5	С	Μ	Clay	
					• •			
¹ Type: C=C	oncentration, D=Dep	letion, RM=R	educed Matrix, MS	S=Masked	d Sand Gr	ains.	² Location:	PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:		_				Indicators for	or Problematic Hydric Soils':
Histosol	(A1)		Sandy (Gleyed Ma	atrix (S4)		🛄 Coast Pr	airie Redox (A16)
Histic E	pipedon (A2)		Sandy F	Redox (S5	5)		Dark Sur	face (S7)
Black H	istic (A3)		Stripped	d Matrix (S	56)		Iron-Man	iganese Masses (F12)
Hydroge	en Sulfide (A4)		Loamy	Mucky Mi	neral (F1)		Very Sha	allow Dark Surface (TF12)
	d Layers (A5)			Gleyed M	atrix (F2)		Other (E:	xplain in Remarks)
	JCK (A1U) d Balaw Dark Surfaa	o (A11)		o Matrix (F3)			
	ark Surface (A12)	e (ATT)		d Dark Sulla	urface (FO)	`	³ Indicators o	f bydrophytic vegetation and
	Aucky Mineral (S1)			Depressio	inace (FR))	wetland h	avdrology must be present
	ucky Peat or Peat (S	3)		Depressio	113 (1 0)		unless di	isturbed or problematic
Restrictive	Laver (if observed)	:						
Type:								
Depth (in	ches):						Hydric Soil P	resent? Yes <u></u> No <u></u>
Remarks:	,							
HYDROLO	GY							
Wetland Hy	drology Indicators:							
Primary Indi	cators (minimum of c	one is required	d: check all that ap	oply)			Secondary	Indicators (minimum of two required)
Surface	Water (A1)		🗹 Water-Sta	ined Leav	es (B9)		Surfac	ce Soil Cracks (B6)
🛛 🔲 High Wa	ater Table (A2)		Aquatic Fa	auna (B13	5)		🗹 Draina	age Patterns (B10)
🖌 🗹 Saturati	on (A3)		True Aqua	atic Plants	(B14)		Dry-Se	eason Water Table (C2)
🛛 🗹 Water N	larks (B1)		Hydrogen	Sulfide O	dor (C1)		Crayfi:	sh Burrows (C8)
Sedime	nt Deposits (B2)		Oxidized F	Rhizosphe	eres on Liv	ing Roots	(C3) 🔲 Satura	ation Visible on Aerial Imagery (C9)
Drift De	posits (B3)		Presence	of Reduce	ed Iron (C	4)	Stunte	ed or Stressed Plants (D1)
🛛 🔲 Algal Ma	at or Crust (B4)		. Recent Iro	n Reducti	ion in Tille	d Soils (Ce	6) 📝 Geom	orphic Position (D2)
Iron Dep	posits (B5)		Thin Muck	Surface ((C7)		FAC-N	Neutral Test (D5)
📘 🛄 Inundati	on Visible on Aerial	magery (B7)	Gauge or	Well Data	(D9)			
🖌 Sparsel	y Vegetated Concav	e Surface (B8	s) 🔲 Other (Exp	plain in Re	emarks)			
Field Obser	vations:	~	<u> </u>					
Surface Wat	er Present? Y	'es <u> </u>	Depth (in	ches):		_		
Water Table	Present? Y	'es 🔘 No	Depth (in	ches):				
Saturation P	resent? Y	es 💽 No	Depth (in	ches): 0		Wet	and Hydrology I	Present? Yes 💿 No 🔘
(includes ca	pillary fringe)							
Describe Re	corded Data (stream	gauge, moni	toring well, aerial	photos, pr	revious ins	spections),	if available:	
Remarks:								

Project/Site: Big Walnut Creek- Wetland Delineation	on City/C	ounty: Brazil/Putnam		Sampling Date: 4/4	1/17			
Applicant/Owner: IUPUI			State: IN	Sampling Point: DI	>3			
Investigator(s): Sarah Wright; Jamie Furgason	Sectio	n, Township, Range: <u>S</u>	ection 20, Townsh	ip 13 North, Range	5 West			
Landform (hillslope, terrace, etc.):		Local relief (conca	ve, convex, none):	concave				
Slope (%): Lat: 39.5457	Long:	-86.9858		Datum: NAD83				
Soil Map Unit Name: Sw- Stonelick Sandy Loam			NWI classific	ation: PFO1A				
Are climatic / hydrologic conditions on the site typica	I for this time of year? Y	es O No O	(If no, explain in R	emarks.)				
Are Vegetation, Soil, or Hydrology	significantly distur	bed? Are "Norma	l Circumstances" p	resent? Yes 💽	_ No			
Are Vegetation, Soil, or Hydrology	_ naturally problema	tic? (If needed,	explain any answei	rs in Remarks.)				
SUMMARY OF FINDINGS – Attach site	SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present? Yes O	No_O							
Hydric Soil Present? Yes O)N₀_Q	Is the Sampled Area		\frown				
Wetland Hydrology Present? Yes _	<u>No</u>	within a Wetland?	Yes 🕛	No				
Remarks:								
VEGETATION - Use scientific names of p	plants.							

00%	Absolute	Dominan	t Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30ft.)	% Cover	Species?	Status	Number of Dominant Species
1. Acer saccharinum	35	Yes	FACW	That Are OBL, FACW, or FAC: 5 (A)
2. Platanus occidentalis	20	Yes	FACW	Total Number of Dominant
3. Populus deltoides	35	Yes	FAC	Species Across All Strata: 5 (B)
4.				(-/
5.				Percent of Dominant Species
	90	- = Total Co	ver	
Sapling/Shrub Stratum (Plot size: 15ft.)			V01	Prevalence Index worksheet:
1				Total % Cover of:Multiply by:
2.				OBL species x 1 =
3.				FACW species x 2 =
4				FAC species x 3 =
5				FACU species x 4 =
()	- = Total Co	ver	UPL species x 5 =
Herb Stratum (Plot size:)		Total Oc		Column Totals: 0 (A) (B)
1. Galium obtusum	10	No	FACW	
2. Urtica dioica	20	Yes	FACW	Prevalence Index = B/A =
3. Verbesina alternifolia	20	Yes	FACW	Hydrophytic Vegetation Indicators:
4.			-	1 - Rapid Test for Hydrophytic Vegetation
5.				✓ 2 - Dominance Test is >50%
6				3 - Prevalence Index is $\leq 3.0^{1}$
7				4 - Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
a		-		Problematic Hydrophytic Vegetation ¹ (Explain)
10				
10	50	- Total Ca	-	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: ^{5ft.})		- 10(a) 00	Vei	be present, unless disturbed or problematic.
1.				Hydrophytic
2.				Vegetation
	0	= Total Co	ver	Present? Yes O No
Remarks: (Include photo numbers here or on a separate s	heet.)			1
	-			

SOIL

Profile Desc	cription: (Describe	to the depth	needed to docur	nent the i	indicator	or confirn	n the absence	of indicators.)
Depth	 Matrix		Redo	x Feature	s			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-16	10YR 4/2	100 1	0YR 6/8	10	С	Μ	Clay	
17				- <u> </u>			21	
Hydric Soil	Indicators:	etion, RIVI=R	educed Matrix, M	5=masked	a Sand Gr	ains.		for Problematic Hydric Soils ³ :
	(A1)			Cloved Ma	atrix (SA)			Prairie Redov (A16)
	nipedon (A2)		Sandy	Redox (S5	i)		Dark Si	urface (S7)
Black H	istic (A3)			d Matrix (S	56)			anganese Masses (F12)
Hydroge	en Sulfide (A4)		Loamy	Mucky Mir	neral (F1)		Very SI	hallow Dark Surface (TF12)
Stratifie	d Layers (A5)		Loamy	Gleyed Ma	atrix (F2)		Other (Explain in Remarks)
2 cm Mu	uck (A10)		🗹 Deplete	d Matrix (F3)			
Deplete	d Below Dark Surfac	e (A11)	Redox	Dark Surfa	ace (F6)			
Thick D	ark Surface (A12)		Deplete	d Dark Su	Irface (F7))	Indicators	of hydrophytic vegetation and
Sandy N	Aucky Mineral (S1)	2)	Redox	Depressio	ns (F8)		wetland	hydrology must be present,
	Lower (if observed)	3)					uniess	disturbed or problematic.
Tupo	Layer (II Observed)							
Danth (in			_				Hydric Soil	Present? Yes 💽 No 🔘
Depth (In	cnes):							
Remarks:								
								
HYDROLO	GY							
Wetland Hy	drology Indicators:							
Primary Indi	cators (minimum of c	one is required	<u>d; check all that ap</u>	oply)			<u>Seconda</u>	ry Indicators (minimum of two required)
Surface	Water (A1)		Water-Sta	ined Leav	es (B9)			ace Soil Cracks (B6)
📙 High Wa	ater Table (A2)		Aquatic Fa	auna (B13)		✓ Drair	nage Patterns (B10)
Saturati	on (A3)		True Aqua	atic Plants	(B14)		Dry-	Season Water Table (C2)
🗹 Water №	larks (B1)		Hydrogen	Sulfide O	dor (C1)		Cray	fish Burrows (C8)
Sedime	nt Deposits (B2)			Rhizosphe	res on Liv	ing Roots	(C3) 📙 Satu	ration Visible on Aerial Imagery (C9)
	posits (B3)		Presence	of Reduce	ed Iron (C4	4)	Stun	ted or Stressed Plants (D1)
	at or Crust (B4)		Recent Irc	on Reducti	on in Tille	d Soils (C6	5) 🖌 Geor	morphic Position (D2)
	posits (B5)			Surface ((C7)		I FAC	-Neutral Test (D5)
	on Visible on Aerial	Imagery (B7)		Well Data	(D9)			
	y Vegetated Concave	e Surface (B8) <u> Other</u> (Exp	plain in Re	emarks)			
Field Obser	vations:	\cap						
Surface Wat	er Present? Y		Depth (in	ches):		-		
Water Table	Present? Y	ies 📿 No	Depth (in	ches):		_		
Saturation P	resent? Y	'es 🜔 No	Depth (in	ches): 0		_ Wetl	and Hydrology	Present? Yes 🕑 No 🕖
Describe Re	corded Data (stream	auge, moni	toring well, aerial	photos, pr	evious ins	pections).	if available:	
	Botta (orroan	. Jac ge, mom	ing non, aonar	p		, couono),		
Remarks:								

Project/Site: Big Walnut Creek- Wetland Delineation	City/County: Brazil/Putnam Sampling Date: 4/4/17				
Applicant/Owner: IUPUI	State: IN Sampling Point: DP4				
Investigator(s): Sarah Wright; Jamie Furgason	Section, Township, Range: Section 29, Township 13 North, Range 5 West				
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none): none				
Slope (%): Lat: 39.5442	Long: <u>-86.9853</u> Datum: <u>NAD83</u>				
Soil Map Unit Name: Sw- Stonelick Sandy Loam	NWI classification: None				
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No O (If no, explain in Remarks.) Are Vegetation , or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes No O Are Vegetation , Soil , or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing	g sampling point locations, transects, important features, etc.				
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: Yes No	Is the Sampled Area within a Wetland? Yes No				

VEGETATION – Use scientific names of plants.

204	Absolute	Dominar	nt Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30ft.)	<u>% Cover</u>	Species'	<u>Status</u>	Number of Dominant Species
1. Acer saccharinum	30	Yes	FACW	That Are OBL, FACW, or FAC: 2 (A)
2				
3				I otal Number of Dominant
				Species Across Air Strata. <u>5</u> (B)
4	·		·	Percent of Dominant Species
5	·			That Are OBL, FACW, or FAC: 66 (A/B)
154	30	= Total Co	over	Developer bedre verde beste
Sapling/Shrub Stratum (Plot size: 151.)				Prevalence Index worksheet:
1			-	Total % Cover of: Multiply by:
2				OBL species x 1 =
3.				FACW species x 2 =
A				FAC species x 3 =
5				FACU species x 4 =
· · · · · · · · · · · · · · · · · · ·		- Total O		
Herb Stratum (Plot size: 5ft.	J		over	
A Poa pratensis	50	Ves	FAC	Column Totals: 0 (A) (B)
Schedonorus pratensis	45	100		Prevalence Index = B/A =
	45	Yes	TACO	
3			_	Hydrophytic Vegetation Indicators:
4			_	1 - Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 - Prevalence Index is ≤3.0 ¹
7			•	4 - Morphological Adaptations ¹ (Provide supporting
	·	-		data in Remarks or on a separate sheet)
8		-		Problematic Hydrophytic Vegetation ¹ (Explain)
9			-	
10			_	Indicate a fluid is self and wells a during had been a second
	95	= Total Co	over	he present unless disturbed or problematic
Woody Vine Stratum (Plot size: 5ft.)				be present, unless disturbed of problematic.
1				Hydrophytic
2				Vegetation
	0	= Total Co	- Ner	Present? Yes No
Remarks: (Include photo numbers here or on a separate	sheet.)			

S	ο	I	L
_	-	-	_

ofile Description: (Describe to the depth needed to document the indicator or confirm the absence of it is epth to the depth needed to document the indicator or confirm the absence of it is epth to the depth needed to document the indicator or confirm the absence of it is epth to the depth needed to document the indicator or confirm the absence of it is epth to the depth needed to document the indicator or confirm the absence of it is epth to the depth needed to document the indicator or confirm the absence of it is epth to the depth needed to document the indicator or confirm the absence of it is epth to the depth needed to document the indicator or confirm the absence of it is epth. 16 10YR 4/3 100 % Type ¹ Loc ² Texture	Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) bw Dark Surface (TF12) lain in Remarks)
Matrix Redox Features Iches) Color (moist) % Type1 Loc2 Texture 16 10YR 4/3 100 Clay	Remarks
Indices Color (moist) % Color (moist) % Type' Loc' Texture 16 10YR 4/3 100 Image: Clay I	_=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) bw Dark Surface (TF12) lain in Remarks)
16 10YR 4/3 100 Clay Image: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. Image: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. Image: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. dric Soil Indicators: Indicators for Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prain Histo pipedon (A2) Sandy Redox (S5) Dark Surface Black Histic (A3) Stripped Matrix (S6) Inon-Mange Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shallo Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) 3Indicators of h Thick Dark Surface (A12) Depleted Dark Surface (F7) 3Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hyounless distication	_=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) bw Dark Surface (TF12) lain in Remarks)
rpe: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL dric Soil Indicators: Indicators for Histosol (A1) Sandy Gleyed Matrix (S4) Histo (A2) Sandy Redox (S5) Black Histic (A3) Stripped Matrix (S6) Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Stratified Layers (A5) Depleted Matrix (F2) 2 cm Muck (A10) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hyg unless dist unless dist	_=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) bw Dark Surface (TF12) lain in Remarks)
rpe: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL dric Soil Indicators: Indicators Histosol (A1) Sandy Gleyed Matrix (S4) Histosol (A2) Sandy Redox (S5) Black Histic (A3) Stripped Matrix (S6) Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Stratified Layers (A5) Loamy Gleyed Matrix (F2) 2 cm Muck (A10) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) unless dist unless dist	-=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) bw Dark Surface (TF12) lain in Remarks)
rpe: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL dric Soil Indicators: Indicators for Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prain Histosol (A1) Sandy Redox (S5) Dark Surface Black Histic (A3) Stripped Matrix (S6) Iron-Manga Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shalld Stratified Layers (A5) Loamy Gleyed Matrix (F3) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) ³ Indicators of h Thick Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydou stratified Layers or Peat (S3) Unless distriphications (F8) Wetland hydou	-=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) ow Dark Surface (TF12) lain in Remarks)
rpe: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL dric Soil Indicators: Indicators for Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prain Histosol (A1) Sandy Redox (S5) Dark Surface Black Histic (A3) Stripped Matrix (S6) Iron-Mangae Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shalld Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) ³ Indicators of h Thick Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) unless distription	.=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) ow Dark Surface (TF12) lain in Remarks)
rpe: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL dric Soil Indicators: Indicators for Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prain Histic Epipedon (A2) Sandy Redox (S5) Dark Surfa Black Histic (A3) Stripped Matrix (S6) Iron-Manga Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shallo Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) ³ Indicators of h Thick Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydou 5 cm Mucky Peat or Peat (S3) unless distriphications unless distriphications	=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) ow Dark Surface (TF12) lain in Remarks)
rpe: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL dric Soil Indicators: Indicators for Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prain Histic Epipedon (A2) Sandy Redox (S5) Dark Surfa Black Histic (A3) Stripped Matrix (S6) Iron-Manga Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shallo Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) ³ Indicators of h Thick Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydou 5 cm Mucky Peat or Peat (S3) unless distriphications unless distriphications	=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) bw Dark Surface (TF12) lain in Remarks)
rpe: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL dric Soil Indicators: Indicators for Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prain Histic Epipedon (A2) Sandy Redox (S5) Dark Surfa Black Histic (A3) Stripped Matrix (S6) Iron-Manga Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shallo Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) ³ Indicators of h Thick Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydou 5 cm Mucky Peat or Peat (S3) unless distriphications unless distriphications	=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) bw Dark Surface (TF12) lain in Remarks)
ype: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL dric Soil Indicators: Indicators for Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prain Histic Epipedon (A2) Sandy Redox (S5) Dark Surfa Black Histic (A3) Stripped Matrix (S6) Iron-Manga Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shalld Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) ³ Indicators of h Thick Dark Surface (A12) Depleted Dark Surface (F7) ³ Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydou 5 cm Mucky Peat or Peat (S3) unless distriphications unless distriphications	-=Pore Lining, M=Matrix. Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) ow Dark Surface (TF12) lain in Remarks)
pe: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. Location: PL dric Soil Indicators: Indicators: Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prain Histic Epipedon (A2) Sandy Redox (S5) Dark Surfa Black Histic (A3) Stripped Matrix (S6) Iron-Manga Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shalk Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) 3Indicators of h Thick Dark Surface (A12) Depleted Dark Surface (F7) 3Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydou 5 cm Mucky Peat or Peat (S3) unless dist unless dist	Problematic Hydric Soils ³ : rie Redox (A16) ce (S7) anese Masses (F12) ow Dark Surface (TF12) lain in Remarks)
Histosol (A1) Sandy Gleyed Matrix (S4) Coast Prain Histosol (A1) Sandy Redox (S5) Dark Surfa Histic Epipedon (A2) Sandy Redox (S5) Dark Surfa Black Histic (A3) Stripped Matrix (S6) Iron-Manga Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shalk Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hyd s cm Mucky Peat or Peat (S3) unless distription Stription	rie Redox (A16) ce (S7) anese Masses (F12) ow Dark Surface (TF12) lain in Remarks)
Instosol (A1) Image: Sandy Gleyed Matrix (S4) Image: Coast Prail Histic Epipedon (A2) Sandy Redox (S5) Image: Dark Surfa Black Histic (A3) Stripped Matrix (S6) Inron-Mange Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shalld Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Other (Exp Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Indicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hyd 5 cm Mucky Peat or Peat (S3) unless distription Unless distription	re Redox (A16) ce (S7) anese Masses (F12) ow Dark Surface (TF12) lain in Remarks)
Instite Explosition (A2) Istite Suffice (A3) Istite Suffice (A3) Information (A2) Black Histic (A3) Stripped Matrix (S6) Information (A2) Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) Very Shalle Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Explored Matrix (F3)) 2 cm Muck (A10) Depleted Matrix (F3) Other (Explored Matrix (F3)) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Sindicators of h Thick Dark Surface (A12) Depleted Dark Surface (F7) Sindicators of h Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydrogy unless distription (F8)	anese Masses (F12) ow Dark Surface (TF12) lain in Remarks)
Image: Distribution of the state of the	ow Dark Surface (TF12) lain in Remarks)
Stratified Layers (A5) Loamy Gleyed Matrix (F2) Other (Exp 2 cm Muck (A10) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) 5 cm Mucky Peat or Peat (S3) unless district	lain in Remarks)
2 cm Muck (A10) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) 5 cm Mucky Peat or Peat (S3) unless district	,
Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thick Dark Surface (A12) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) 5 cm Mucky Peat or Peat (S3) unless distribution	
Thick Dark Surface (A12) □ Depleted Dark Surface (F7) ³ Indicators of h Sandy Mucky Mineral (S1) □ Redox Depressions (F8) wetland hyo unless dist unless dist	
Sandy Mucky Mineral (S1) Redox Depressions (F8) wetland hydrogenetics 5 cm Mucky Peat or Peat (S3) unless distribution	ydrophytic vegetation and
5 cm Mucky Peat or Peat (S3) unless dist	drology must be present,
	urbed or problematic.
strictive Layer (if observed):	
Type:	
Depth (inches):	
marks:	
DROLOGY	
etland Hydrology Indicators:	
mary Indicators (minimum of one is required: check all that apply) Secondary Ir	dicators (minimum of two required)
	Soil Cracks (B6)
High Water Table (A2)	Patterns (B10)
Saturation (A3) \Box True Aquatic Plants (B14) \Box Dru-Sea	son Water Table (C2)
Water Marks (B1)	Burrows (C8)
Sediment Deposite (B2) \Box Ovidized Rhizospheres on Living Roots (C3) \Box Saturativ	on Visible on Aerial Imagery (C9)
	or Stressed Plants (D1)
Algal Mat or Crust (B4)	nhic Position (D2)
	utral Test (D5)
Injundation Visible on Aerial Imageny (R7)	
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9)	
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Id Observations: face Water Brecent?	
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Id Observations: rface Water Present? Yes O No Depth (inches):	
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Id Observations: rface Water Present? Yes O No O Depth (inches): rter Table Present? Yes O No O Depth (inches):	
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Id Observations: rface Water Present? Yes O No O Depth (inches): ter Table Present? Yes O No O Depth (inches): Under Capillary frince) Wetland Hydrology Pre	esent? Yes <u>No</u> No

Remarks:

Project/Site: Big Walnut Creek- Wetland Delineation	(City/County: Bra	azil/Putnan	<u>ו</u>	Sampli	ing Date: <u>4/4/17</u>	
Applicant/Owner: IUPUI				_ State: IN	Sampli	ng Point: DP5	
Investigator(s): Sarah Wright; Jamie Furgason	\$	Section, Townsh	nip, Range:	Section 20, Townsh	ip 13 N	lorth, Range 5 W	est
Landform (hillslope, terrace, etc.):		Loca	l relief (con	cave, convex, none):	none		
Slope (%): Lat: 39.5498	I	Long: <u>-86.9830</u>			Datum	NAD83	
Soil Map Unit Name: Sh- Shoals Silt Loam				NWI classifica	ation: <u>N</u>	lone	
Are climatic / hydrologic conditions on the site typical for this	time of yea	ar?Yes 💽	No O	_ (If no, explain in Re	emarks.	.)	
Are Vegetation, Soil, or Hydrology sig	gnificantly o	disturbed?	Are "Nori	mal Circumstances" p	resent?	Yes O No	0
Are Vegetation, Soil, or Hydrology na	aturally prot	blematic?	(If neede	d, explain any answer	s in Re	marks.)	
SUMMARY OF FINDINGS – Attach site map s	SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: No No	0	Is the Sa within a	mpled Are Wetland?	a Yes _	N	• <u> </u>	
VEGETATION – Use scientific names of plants.							
Tree Stratum (Plot size: 30ft.)	% Cover	Species? Sta	atus Νι	umber of Dominant Sp	pecies	-	
1. Aesculus glabra	20	Yes FAC		at Are OBL, FACW, o	or FAC:	5	(A)
2. Platanus occidentalis	20	Yes FAC	To	tal Number of Domina	ant	_	
	40	Tes TAC	Sp Sp	ecies Across All Strat	ta:	5	(B)
4			Pe	ercent of Dominant Sp	ecies	100	
·	80	- Total Cover	[1h	at Are OBL, FACW, c	or FAC:		(A/B)
Sapling/Shrub Stratum (Plot size: 15ft.)			Pr	evalence Index work	sheet:		
1				Total % Cover of:		Multiply by:	-
2			0	BL species	2	x 1 =	

20

70

0

0 _____ = Total Cover

Yes

Yes

__ = Total Cover

= Total Cover

FACW

FACW

5.

1. Urtica dioica

2. Verbesina alternifolia 50

4. _____ ____

6._____

3. ______

5. ______ _____ _____

7._____

8. _____

9. _____ ____

Remarks: (Include photo numbers here or on a separate sheet.)

Herb Stratum (Plot size: 5ft.)

10. _____

Woody Vine Stratum (Plot size: 5ft.

1. _____

2.

)

FACW species _____ x 2 = _____

FAC species _____ x 3 = _____

FACU species _____ x 4 = _____

UPL species _____ x 5 = _____

Prevalence Index = B/A = _____

1 - Rapid Test for Hydrophytic Vegetation

Hydrophytic Vegetation Indicators:

✓ 2 - Dominance Test is >50%

3 - Prevalence Index is ≤3.0¹

Hydrophytic Vegetation

Present?

Column Totals: 0 (A) (B)

4 - Morphological Adaptations¹ (Provide supporting

data in Remarks or on a separate sheet)

Problematic Hydrophytic Vegetation¹ (Explain)

¹Indicators of hydric soil and wetland hydrology must

Yes <u>No</u> No

be present, unless disturbed or problematic.

S	ο	I	L
_	-	-	_

SOIL						Sampling Point: DI 3
Profile Desc	cription: (Describe	to the depth	needed to document the ind	icator or confir	m the absence	of indicators.)
Depth	 Matrix		Redox Features			,
(inches)	Color (moist)	%	Color (moist) %	Type ¹ Loc ²	Texture	Remarks
0-16	10YR 4/3	100			Clav	
			· ·			
			· ·			
¹ Type: C=C	oncentration. D=De	pletion, RM=R	educed Matrix. MS=Masked Sa	and Grains.	² Location	PL=Pore Lining, M=Matrix,
Hydric Soil	Indicators:				Indicators	for Problematic Hydric Soils ³ :
	(41)		Sandy Glaved Matrix	(\$4)		Prairie Redox (A16)
	ningdon (A2)			((34)		urface (SZ)
	pipedon (A2)		Christian and Matrix (SS)			
	ISUC (AS)					hollow Dark Surface (TE12)
	en Sulfide (A4)			al (F1)		nallow Dark Surface (TF12)
	d Layers (A5)			X (FZ)	Uther (Explain in Remarks)
	uck (A10)	(6.4.4)		(50)		
	d Below Dark Surrad	ce (A11)		(F6)	31	
	ark Surface (A12)			Ce (F7)	Indicators	of hydrophytic vegetation and
	Mucky Mineral (S1)		Redox Depressions	(F8)	wetland	hydrology must be present,
5 cm Mi	ucky Peat or Peat (S	53)			unless	disturbed or problematic.
Restrictive	Layer (if observed)):				
Туре:			_			
Depth (in	ches):				Hydric Soil	Present? Yes O No O
Remarks:						
r tornarito.						
	GY					
Madan d Lla						
Wetland Hy	drology indicators	:				
Primary Indi	cators (minimum of	one is required	; check all that apply)		<u>Seconda</u>	ry Indicators (minimum of two required)
Surface	Water (A1)		Water-Stained Leaves	(B9)	Surfa	ace Soil Cracks (B6)
High Wa	ater Table (A2)		Aquatic Fauna (B13)		Drai	nage Patterns (B10)
Saturati	on (A3)		True Aquatic Plants (B	14)	Drv-	Season Water Table (C2)
Water M	larks (B1)			(C1)		fish Burrows (C8)
	nt Denesite (P2)			(01)		ration Visible on Asriel Imageny (CO)
						Tation Visible on Aerial Imagery (C9)
	posits (B3)		Presence of Reduced I	ron (C4)	Stun	ited or Stressed Plants (D1)
Algal Ma	at or Crust (B4)		. Recent Iron Reduction	in Tilled Soils (C	6) 📙 Geo	morphic Position (D2)
Iron Dep	posits (B5)		Thin Muck Surface (C7)	🖌 FAC	-Neutral Test (D5)
Inundati	ion Visible on Aerial	Imagery (B7)	🔲 Gauge or Well Data (D	9)		
Sparse	y Vegetated Concav	ve Surface (B8)) 🔲 Other (Explain in Rema	arks)		
Field Obser	vations:			-		
Surface Wet	for Procent?		Denth (inches);			
Surface wat						
Water Table	Present?	Yes 📯 No	Depth (inches):			\circ
Saturation P	resent?	Yes ᢕ No	Depth (inches):	We	tland Hydrology	/ Present? Yes 🕖 No 🔍
(includes ca	pillary fringe)		and a second		14	
Describe Re	corded Data (stream	n gauge, monif	oring well, aerial photos, previ	ous inspections)), it available:	

Remarks:

Project/Site: Big Walnut Creek- Wetla	City/County: Brazil/	/Putnam		Sampling Date:	4/4/17	
Applicant/Owner: <u>IUPUI</u>			Stat	te: IN	Sampling Point:	DP6
Investigator(s): Sarah Wright; Jamie F	urgason	Section, Township,	Range: Section	on 20, Townsh	ip 13 North, Rar	nge 5 West
Landform (hillslope, terrace, etc.):		Local rel	lief (concave, d	convex, none):	none	
Slope (%): Lat: 39.5493	i	Long: <u>-86.9829</u>			Datum: NAD83	
Soil Map Unit Name: Sh- Shoals Silt L	.oam			NWI classifica	ation: None	
Are climatic / hydrologic conditions on the Are Vegetation, Soil, or Are Vegetation, Soil, or SUMMARY OF FINDINGS – A Hydrophytic Vegetation Present?	he site typical for this time of Hydrology significa Hydrology naturally Attach site map show Yes No Yes No	of year? Yes <u>No</u> No antly disturbed? A y problematic? (It ring sampling poin	o (If n .re "Normal Cir f needed, expl: nt locations	no, explain in Re rcumstances" p ain any answer s, transects ,	emarks.) resent? Yes (rs in Remarks.) , important fe)No
Wetland Hydrology Present?) within a We	tland?	Yes 💽	No_O	_
Remarks: VEGETATION – Use scientific names of plants.						
The Other (Distring 30ft	Absol	lute Dominant Indicate	or Dominar	nce Test works	sheet:	

Tree Stratum (Plot size: <u>30ft.</u>)	% Cover	Species? Status	Number of Dominant Species
1. Acer negundo	25	Yes FAC	That Are OBL, FACW, or FAC: 5 (A)
2. Acer saccharinum	35	Yes FACW	
3. Populus deltoides	35	Yes FAC	Species Across All Strata: 5 (B)
4.			
5.			Percent of Dominant Species
	95	= Total Cover	
Sapling/Shrub Stratum (Plot size: 15ft.)			Prevalence Index worksheet:
1			Total % Cover of:Multiply by:
2			OBL species x 1 =
3			FACW species x 2 =
4			FAC species x 3 =
5			FACU species x 4 =
-	0	= Total Cover	UPL species x 5 =
Herb Stratum (Plot size: 5tt.)			Column Totals: 0 (A) (B)
1. Elymus riparius	20	Yes FACW	
2. Verbesina alternifolia	20	Yes FACW	Prevalence Index = B/A =
3			Hydrophytic Vegetation Indicators:
4			1 - Rapid Test for Hydrophytic Vegetation
5			✓ 2 - Dominance Test is >50%
6			3 - Prevalence Index is ≤3.0 ¹
7			. 4 - Morphological Adaptations ¹ (Provide supporting
8.			data in Remarks or on a separate sheet)
9.			Problematic Hydrophytic Vegetation ¹ (Explain)
10.			
	40	= Total Cover	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 5ft.)			be present, unless disturbed or problematic.
1			Hydrophytic
2			Vegetation
	0	= Total Cover	Present? Yes V No
Remarks: (Include photo numbers here or on a separate	sheet.)		•

L

S	ο	I	L
-	-	-	_

Profile Desc	cription: (Describe	to the dept	h needed to docume	nt the indicate	or or confir	m the absence o	of indicators.)
Depth	Matrix		Redox F	eatures	1 1 2	-	D
(inches)	Color (moist)	%	Color (moist)	<u>%</u> <u>Type</u>		lexture	Remarks
0-3	10YR 4/1	100			_	Clay	
3-20	10YR 4/4	100				Sand	
					_		
		·		·			
				·			
						l	
¹ Type: C=C	oncentration, D=Dep	pletion, RM=	Reduced Matrix, MS=I	Masked Sand	Grains.	² Location:	PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:					Indicators f	or Problematic Hydric Soils ³ :
Histosol	(A1)		🔲 Sandy Gle	yed Matrix (S4)	Coast P	rairie Redox (A16)
Histic E	pipedon (A2)		Sandy Red	dox (S5)		Dark Su	Irface (S7)
D Black Hi	istic (A3)		. Stripped N	latrix (S6)		Iron-Ma	nganese Masses (F12)
Hydroge	en Sulfide (A4)		Loamy Mu	cky Mineral (F	1)	Very Sh	allow Dark Surface (TF12)
	d Layers (A5)		Loamy Gle	eyed Matrix (F2	2)	Other (E	Explain in Remarks)
Domination	uck (A10) d Balaw Dark Surfac	~ (411)		Matrix (F3)			
	ark Surface (A12)	Se (ATT)		Dark Surface (F0)	- -7)	³ Indicators	of hydrophytic vegetation and
Sandy N	Aucky Mineral (S1)			pressions (F8)	.,	wetland	hydrology must be present.
5 cm Mu	ucky Peat or Peat (S	33)	,			unless o	disturbed or problematic.
Restrictive	Layer (if observed)	:					
Туре:							
Depth (in	ches):					Hydric Soil F	Present? Yes O No O
Remarks:							
	GY						
wetland Hy	drology indicators					0	
Primary Inde	cators (minimum of o	one is require	ed; check all that apply	()		Secondar	y Indicators (minimum of two required)
Surface	Water (A1)		Water-Staine	d Leaves (B9)			ce Soil Cracks (B6)
High Wa	ater Table (A2)		Aquatic Faun	ia (B13)		Drain	age Patterns (B10)
Saturation	on (A3)			Plants (B14)			Season Water Table (C2)
Vater N	larks (B1)		Hydrogen Su	lifide Odor (C1)		ish Burrows (C8)
	nt Deposits (B2)			zospheres on I	Living Roots	(C3) Satur	ation Visible on Aerial Imagery (C9)
				Reduced Iron (ed or Stressed Plants (D1)
	at or Crust (B4)				lied Solis (C		Northal Tast (D5)
	ion Visible on Asriel	Imagan/ (P7				V FAC-	Neutral Test (D5)
	on visible on Aerial	Imagery (B7) Gauge of We	in in Romarka)			
Field Obser	y vegetated Concav	e Sunace (E		m m rtemarks)			
Surface Wet	valions.						
Surface wat		\sim		55). <u></u>	—		
vvater Table	Present?			es):	—		
Saturation P (includes car	resent?) pillary fringe)	res 🕑 N	Depth (Inche	es): _0	Wet	liand Hydrology	Present? Yes S No S
Describe Re	corded Data (stream	n aauae, mo	nitoring well, aerial pho	otos, previous i	inspections)	, if available:	

Remarks:

Project/Site: Big Walnut Creek- Wetland Delineation	City/County: Brazil/Putnam	Sampling Date: <u>4/4/17</u>			
Applicant/Owner: IUPUI	State: _!!	N Sampling Point: DP7			
Investigator(s): Sarah Wright; Jamie Furgason	Section, Township, Range: Section 2	0, Township 13 North, Range 5 West			
Landform (hillslope, terrace, etc.):	Local relief (concave, conv	ex, none): none			
Slope (%): Lat: 39.5485	Long: <u>-86.9831</u>	Datum: NAD83			
Soil Map Unit Name: Sw- Stonelick Sandy Loam	NV	VI classification: None			
Are climatic / hydrologic conditions on the site typical for this time of y	rear? Yes No (If no, ex	xplain in Remarks.)			
Are Vegetation, Soil, or Hydrology significantl	y disturbed? Are "Normal Circum	stances" present? Yes 💽 No 🔘			
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes O No					
Hydric Soil Present? Yes No	Is the Sampled Area				
Wetland Hydrology Present? Yes O No	within a Wetland?	Yes No			
Remarks:					

VEGETATION – Use scientific names of plants.

20#	Absolute	Dominant Indi	dicator	Dominance Test worksheet:
Tree Stratum (Plot size: Solt.)	% Cover	<u>Species?</u> St	Status	Number of Dominant Species
1. Platanus occidentalis	35	Yes FAC		That Are OBL, FACW, or FAC: (A)
2. Ulmus americana	35	Yes FAC	ACW	Total Number of Dominant
3				Species Across All Strata: (B)
4.				,
5				Percent of Dominant Species
	70	- Total Covar		That Are OBL, FACW, or FAC: (A/B)
Sapling/Shrub Stratum (Plot size: 15ft.)		- Total Cover	ŀ	Prevalence Index worksheet:
1.				Total % Cover of: Multiply by:
2				OBL species x 1 =
3				FACW species x 2 =
A.				FAC species x 3 =
4		·		
D				
Herb Stratum (Plot size: 5ft.	0	= Total Cover		UPL species x 5 =
Elymus riparius	20	Ves FA(ACW	Column Totals: 0 (A) (B)
- Galium obtusum				Prevalence Index = B/A =
2. Galium oblusum	10			
3				Hydrophytic vegetation indicators:
4				I - Rapid Test for Hydrophytic Vegetation
5		_		2 - Dominance Test is >50%
6				3 - Prevalence Index is ≤3.0 ¹
7.				4 - Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
0				Problematic Hydrophytic Vegetation ¹ (Explain)
5				
10				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot aize: 5ft.)	30	= Total Cover		be present, unless disturbed or problematic.
(Flot size)			ŀ	
1				Hydrophytic
2		- <u> </u>		Present? Yes No
	0	= Total Cover		
Remarks: (Include photo numbers here or on a separate s	sheet.)			

SOIL

SOIL							Sampling Point: D	- 1
Profile Des	cription: (Describ	e to the dep	oth needed to docu	ment the indicato	r or confirn	n the absence o	f indicators.)	
Depth	Matrix		Red	ox Features				
(inches)	Color (moist)	%	Color (moist)	%Type ¹	Loc ²	Texture	Remarks	
0-16	10YR 4/1	100	7.5YR 5/8	5		Clay		
					-			
					•			
					_			
¹ Type: C=C	concentration, D=De	epletion, RM	=Reduced Matrix, N	IS=Masked Sand G	rains.	² Location:	PL=Pore Lining, M=Matrix.	
Hydric Soil	Indicators:		_			Indicators for	or Problematic Hydric Soi	ls':
Histoso	I (A1)		Sandy	Gleyed Matrix (S4)		Coast P	rairie Redox (A16)	
Histic E	pipedon (A2)		Sandy	Redox (S5)		Dark Su	rface (S7)	
Black H	listic (A3)		Strippe	ed Matrix (S6)		Iron-Mar	nganese Masses (F12)	
Hydrog	en Sulfide (A4)		Loamy	Mucky Mineral (F1)	Very Sh	allow Dark Surface (TF12)	
	d Layers (A5)		Loamy	Gleyed Matrix (F2)		Other (E	xplain in Remarks)	
	uck (A10)	(() ()	<u>I</u> Deplet	ed Matrix (F3)				
	ed Below Dark Surfa	ice (A11)		Dark Surface (F6)	7)	³ Indicators o	f hydrophytic vegetation and	d
	Ark Surface (A12)			Depressions (F9)	()	Indicators d	by drology must be present	IC
	ucky Peat or Peat (S3)		Depressions (Po)			listurbed or problematic	
Restrictive	Laver (if observed	00) N·					isturbed of problematic.	
Type:	Luyer (il observed	.y.					-	~
Type.						Hydric Soil P	Present? Yes 💽 N	10_0_
Depth (Ir	icnes):							
HIDROLU								
Wetland Hy	drology indicators	5:						
Primary Ind	icators (minimum of	one is requi	red; check all that a	ipply)		<u>Secondar</u>	y Indicators (minimum of tw	<u>o required)</u>
✓ Surface	Water (A1)		Vater-St	ained Leaves (B9)		Surfa	ce Soil Cracks (B6)	
High W	ater Table (A2)		Aquatic F	auna (B13)		Draina	age Patterns (B10)	
<u>√</u> Saturat	ion (A3)		True Aqu	atic Plants (B14)		Dry-S	eason Water Table (C2)	
Water M	/larks (B1)		Hydroger	n Sulfide Odor (C1)		Crayf	ish Burrows (C8)	
Sedime	nt Deposits (B2)		Oxidized	Rhizospheres on L	ving Roots	(C3) 🔲 Satura	ation Visible on Aerial Imag	ery (C9)
🔲 Drift De	posits (B3)		Presence	e of Reduced Iron (0	(4)	Stunte	ed or Stressed Plants (D1)	
🔲 Algal M	at or Crust (B4)		. Recent Ir	on Reduction in Till	ed Soils (C6	6) 📝 Geom	norphic Position (D2)	
Iron De	posits (B5)		Thin Muc	k Surface (C7)		🖌 FAC-I	Neutral Test (D5)	
_ Inundat	ion Visible on Aeria	l Imagery (B	7) 🔲 Gauge or	r Well Data (D9)				
Sparse	y Vegetated Conca	ve Surface (B8) 🔲 Other (Ex	(plain in Remarks)				
Field Obse	rvations:	~	~	-				
Surface Wa	ter Present?	Yes 💽	No O Depth (ii	nches): ³				
Water Table	Present?	Yes O	No Depth (ii	nches):				
Saturation E	Present?	Yes O	No O Depth (iii	nches): 0		and Hydrology		
(includes ca	pillary fringe)		Deput (ii	iones)	weu	ana nyurulugy		
Describe Re	corded Data (streat	m gauge, m	onitoring well, aerial	l photos, previous ir	spections),	if available:		
Remarks:								

Project/Site: Big Walnut Creek- Wetland Delineation	City/County: Brazil/Putnam Sampling Date: 4/4/17				
Applicant/Owner: IUPUI	State: <u>IN</u> Sampling Point: <u>DP8</u>				
Investigator(s): Sarah Wright; Jamie Furgason	_ Section, Township, Range: Section 20, Township 13 North, Range 5 West				
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none): none				
Slope (%): Lat: 39.5478	_ Long: <u>-86.9834</u> Datum: <u>NAD83</u>				
Soil Map Unit Name: Sw- Stonelick Sandy Loam	NWI classification: None				
Are climatic / hydrologic conditions on the site typical for this time of ye	rear? Yes No (If no, explain in Remarks.)				
Are Vegetation, Soil, or Hydrology significantly	y disturbed? Are "Normal Circumstances" present? Yes 💽 No 🔘				
Are Vegetation, Soil, or Hydrology naturally pr	roblematic? (If needed, explain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: Ves No	Is the Sampled Area within a Wetland? Yes No				

VEGETATION – Use scientific names of plants.

	Absolute	Dominar	nt Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 301.	% Cover	Species	<u>Status</u>	Number of Dominant Species
1. Acer negundo	50	Yes	FAC	That Are OBL, FACW, or FAC: 3 (A)
2			-	Total Number of Dominant
3			_	Species Across All Strata: _3 (B)
4				
5.		-		Percent of Dominant Species
	50	= Total Co	over	
Sapling/Shrub Stratum (Plot size: 15ft.)		- 10(a) 0(0461	Prevalence Index worksheet:
1.				Total % Cover of: Multiply by:
2				OBL species x 1 =
3			-	FACW species x 2 =
3	·			
4		-		
5	·	-		FACO species X 4 =
Harb Stratum (Plat size: 5ft.	0	= Total Co	over	UPL species x 5 =
	10	No	FACW	Column Totals: 0 (A) (B)
1. Calex spp.	- 10	NU		Provolonce Index - P/A -
2. Elymus ripanus	20	Yes		
3. Verbesina alternifolia		Yes	FACW	Hydrophytic Vegetation Indicators:
4			_	1 - Rapid Test for Hydrophytic Vegetation
5			_	2 - Dominance Test is >50%
6				3 - Prevalence Index is ≤3.0 ¹
7.				4 - Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
0				Problematic Hydrophytic Vegetation ¹ (Explain)
a	·	•	•	
10				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 5ft.)	50	= Total Co	over	be present, unless disturbed or problematic.
l	·		•	Hydrophytic
2			-	Present? Yes No
	0	= Total Co	over	
Remarks: (Include photo numbers here or on a separate s	sneet.)			

SOIL

pul,		0/	0.1. (0/	- 1	1 2	T 1	D
ches)	Color (moist)		Color (moist)		Type	Loc	lexture	Remarks
16	10YR 4/1	100	7.5YR 5/8	10			Clay	
		(
		(·			
pe: C=C	oncentration, D=Dep	etion, RM=	Reduced Matrix, M	S=Masked	Sand Gra	ains.	² Location:	PL=Pore Lining, M=Matrix.
ric Soil	Indicators:		_				Indicators f	for Problematic Hydric Soils ³ :
Histosol	(A1)		Sandy	Gleyed Mat	rix (S4)		Coast F	Prairie Redox (A16)
Histic Ep	pipedon (A2)		Sandy	Redox (S5)			Dark Su	urface (S7)
Black Hi	stic (A3)			d Matrix (St	6) anal (E1)		Iron-Ma	anganese Masses (F12)
Stratified	H Sunde (A4)			Gleved Mat	trix (F2)		Other (F	Explain in Remarks)
2 cm Mu	ick (A10)			ed Matrix (F	3)			
Depleted	d Below Dark Surfac	e (A11)	Redox	Dark Surfac	ce (F6)			
Thick Da	ark Surface (A12)		Deplete	ed Dark Sur	face (F7)		³ Indicators	of hydrophytic vegetation and
Sandy M	lucky Mineral (S1)		📃 Redox	Depression	s (F8)		wetland	hydrology must be present,
5 cm Mu	icky Peat or Peat (S	3)					unless o	disturbed or problematic.
		<u> </u>						
strictive	Layer (if observed)	:						
strictive I	Layer (if observed)	:					Hydric Soil I	Present? Yes • No
strictive I Type: Depth (ind marks:	Layer (if observed)						Hydric Soil I	Present? Yes <u></u> No
strictive I Type: Depth (ind marks:	Layer (if observed)						Hydric Soil I	Present? Yes <u></u> No <u></u>
Strictive I Type: Depth (ind marks:	Ches):						Hydric Soil I	Present? Yes <u></u> No
strictive I Type: Depth (ind narks: DROLO tland Hyd	Ches): GY drology Indicators:						Hydric Soil I	Present? Yes <u></u> No <u></u>
strictive I Type: Depth (ind marks: DROLO tland Hyd mary India	GY GY Indicators: Cators (minimum of cators)	ne is requir	ed; check all that a	pply)			Hydric Soil I	Present? Yes No
strictive I Type: Depth (inumarks: marks: DROLO tland Hyunary India Surface	GY drology Indicators: cators (minimum of of Water (A1)	ne is requir	ed: check all that a	pply) ined Leave			Hydric Soil I	Present? Yes No ny Indicators (minimum of two requi ace Soil Cracks (B6)
Strictive I Type: Depth (ind narks: DROLO tland Hyd nary India Surface High Wa	GY drology Indicators: cators (minimum of of Water (A1) ater Table (A2)	י <u>חe is requir</u>	ed: check all that a	pply) ained Leave auna (B13)	es (B9)		Hydric Soil I	Present? Yes No ry Indicators (minimum of two requi ace Soil Cracks (B6) hage Patterns (B10)
strictive I Type: Depth (ind marks: DROLO tland Hyd mary Indid Surface High Wa Saturatid	GY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3)	ne is requir	ed: check all that a Water-Sta Aquatic F	pply) ained Leave auna (B13) atic Plants (s (B9) B14)		Hydric Soil I Hydric Soil I Secondar Surfa Drair Dry-S	Present? Yes No No ry Indicators (minimum of two requi ace Soil Cracks (B6) hage Patterns (B10) Season Water Table (C2)
Strictive I Type: Depth (ind narks: DROLO tland Hyd Saurface High Wa Saturation Water M	GY drology Indicators: cators (minimum of of Water (A1) tter Table (A2) on (A3) larks (B1)	ne is requir	ed: check all that a Water-Sta Aquatic F True Aqua Hydrogen	pply) ained Leave auna (B13) atic Plants (Sulfide Od	es (B9) B14) or (C1)		Hydric Soil I Hydric Soil I Secondar Surfa Drair Dry-S Crayl	Present? Yes No No ry Indicators (minimum of two requi ace Soil Cracks (B6) hage Patterns (B10) Season Water Table (C2) fish Burrows (C8)
strictive I Type: Depth (int marks: DROLO Tland Hy mary India Surface High Wa Saturatia Water M Sedimer	GY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) write (D2)	<u>ne is requir</u>	ed; check all that a Water-Sta Aquatic F True Aqua Hydrogen	pply) ained Leave auna (B13) atic Plants (Sulfide Od Rhizosphere	s (B9) B14) or (C1) es on Livi	ing Roots	Hydric Soil I Secondar Surfa Drair Dry-5 Crayfi (C3) Satur	Present? Yes No No ry Indicators (minimum of two requi ace Soil Cracks (B6) hage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9
strictive I Type: Depth (inin narks: DROLO tland Hym nary India Surface High Wa Saturatio Water M Sedimer Drift Dep	GY drology Indicators: cators (minimum of of Water (A1) tter Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3)	yne is requir	ed: check all that a Water-Sta Aquatic F True Aqua Hydrogen Oxidized	pply) ained Leave auna (B13) atic Plants (Sulfide Od Rhizosphere of Reduced	es (B9) B14) or (C1) es on Livi d Iron (C4	ing Roots	Hydric Soil I Secondar Surfa Drair Dry-S Crayi (C3) Suturl Surfa Crayi Surfa Crayi Crayi Surfa Crayi Crayi Surfa Crayi Crayi Surfa Crayi	Present? Yes No No ry Indicators (minimum of two requi ace Soil Cracks (B6) hage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1)
Strictive I Type: Depth (ind narks: DROLO tland Hyd Mary India Surface High Wa Saturatid Water M Sedimer Drift Dep Algal Ma	GY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (P5)	י <u>חe is requir</u>	ed: check all that a Water-Sta Aquatic F C True Aqua Hydrogen Oxidized Presence Recent Ind	pply) ained Leave auna (B13) atic Plants (Sulfide Od Rhizosphere of Reduced on Reductio	es (B9) B14) or (C1) es on Livi d Iron (C4 n in Tilleo	ing Roots	Hydric Soil I Secondar Surfa U Drair Dry-S Crayf (C3) Satur Stunf 6) V Geor	Present? Yes No No ry Indicators (minimum of two requi ace Soil Cracks (B6) hage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2) Navitel Tast (D5)
Strictive I Type: Depth (ind narks: DROLO DROLO tland Hyd Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep	GY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Vicible on Aerial	ne is requir	ed: check all that a U Water-Sta Aquatic F Aquatic F G True Aqua Hydrogen Oxidized Presence Recent In C Thin Muc	pply) ained Leave auna (B13) atic Plants (Sulfide Od Rhizosphere of Reduced on Reductio k Surface (C Well Data (es (B9) B14) or (C1) es on Livi d Iron (C4 n in Tilleo C7)	ing Roots	Hydric Soil I Secondar Surfa Drair Dry-S Crayi (C3) Satur Stunt 6) Ø Geor Ø FAC-	Present? Yes No No No Present? Yes No No No No Present? Yes No No Present? No No No No Present? No No No No No No No No No No
Strictive I Type: Depth (indi- narks: DROLO CROL	GY GY drology Indicators: cators (minimum of of Water (A1) tter Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial / Vegetated Concav	ne is requir	ed: check all that a Uter-Sta Aquatic F Aquatic F CHAPTER Aqua Chydrogen Chy	pply) ained Leave auna (B13) atic Plants (Sulfide Od Rhizosphen of Reduced on Reductio k Surface (C Well Data (plain in Ren	es (B9) B14) or (C1) es on Livi d Iron (C4 on in Tilled C7) (D9) marks)	ing Roots -) d Soils (Ci	Hydric Soil I Secondar Surfa U Drair Dry-S Crayl (C3) Satur Stunt 6) V Geor V FAC-	Present? Yes No No Yes No No Yes No No Yes No No Yes No Ye
strictive I Type: Depth (in marks: DROLO tland Hyd mary India Surface High Wa Saturatia Water M Sedimer Drift Dep Algal Ma Iron Dep Inundati Sparsely	GY drology Indicators: cators (minimum of of Water (A1) ter Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial / Vegetated Concav vations:	me is requir	ed; check all that a Water-Sta Aquatic F True Aqua Hydrogen Oxidized Presence Recent Ind Thin Mucl 7) Gauge or 38) Other (Ex	pply) ained Leave auna (B13) atic Plants (Sulfide Od Rhizospheri of Reduced on Reductio k Surface (C Well Data (plain in Rer	es (B9) B14) or (C1) es on Livi d Iron (C4 on in Tilleo C7) (D9) narks)	ing Roots -) d Soils (Cl	Hydric Soil I Secondar Surfa Drair Dry-5 Crayf (C3) Satur Sturf Sturf FAC-	Present? Yes No No No Present? Yes No No Present? Yes No
strictive I Type: Depth (ind marks: Depth (ind marks: Depth (ind marks: Depth (ind marks: Depth (ind Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Inundati Sparsely Id Obser	GY GY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial / Vegetated Concav vations: er Present?	magery (B7 ∋ Surface (E	ed: check all that a Water-Sta Aquatic F Aquatic F Aquatic F Aquatic Aquatic Hydrogen Oxidized Presence Recent Ind Thin Mucl Gauge or 38) Other (Ex	pply) ained Leave auna (B13) atic Plants (Sulfide Od Rhizosphen of Reduced on Reductio k Surface (C Well Data (plain in Rer	es (B9) B14) or (C1) es on Livi d Iron (C4 n in Tilleo C7) (D9) narks)	ing Roots) d Soils (Ci	Hydric Soil I Secondar Surfa Surfa Dry-S Crayt (C3) Satur Sturf 6) Ø Geor Ø FAC-	Present? Yes No No No Present? Yes No No No Present? Yes No No Present? No No No No Present? No No No No No No No No No No
strictive I Type: Depth (ind marks: Depth (ind marks: Depth (ind marks: Depth (ind marks: Depth (ind surface High Wa Saturation Surface High Water M Sedimer Drift Dep Algal Ma Iron Dep Inundati Sparsely Id Obser fface Water	GY GY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial / Vegetated Concav vations: er Present?	Imagery (B7	ed: check all that a Water-Sta Aquatic F True Aqua Hydrogen Oxidized Presence Recent In Gauge or 38) Other (Ex	pply) ained Leave auna (B13) atic Plants (Sulfide Od Rhizosphere of Reduced on Reductio k Surface (C Well Data (plain in Rer aches): <u>3</u>	es (B9) B14) or (C1) es on Livi d Iron (C4 n in Tilleo C7) (D9) marks)	ing Roots	Hydric Soil I Secondar Surfa J Drair Dry-S Crayi (C3) Satur Stunt 6) Ø Geor Ø FAC-	Present? Yes No No No No Present? Yes No No No Present? Yes No
strictive I Type: Depth (inc marks: Depth (inc marks: Depth (inc marks: Depth (inc marks: Depth (inc marks: Surface High Wa Saturation Sedimer Drift Dep Algal Ma Iron Dep Inundati Sparsely Id Obser face Wat	GY GY drology Indicators: cators (minimum of of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: er Present? Present?	Imagery (B7 9 Surface (E ies O	ed; check all that a Water-Sta Aquatic F Aquatic F Aquatic F Aquatic G Presence Presence Recent In Gauge or 38) Other (Ex No Depth (ir No Depth (ir	pply) ained Leave auna (B13) atic Plants (Sulfide Od Rhizosphere of Reduced on Reductio k Surface (C Well Data (plain in Rer aches): <u>3</u> aches): <u>0</u>	es (B9) B14) or (C1) es on Livi d Iron (C4 on in Tilled C7) (D9) narks)	ing Roots	Hydric Soil I Secondar Surfa Surfa Drain Dry-S Crayi (C3) Satur Stunt 6) Ø Geor Ø FAC-	Present? Yes No No Present? Yes No No Present? Yes No Present? Yes No Present? Yes No No Present Yes No Pre

Project/Site: Big Walnut Creek- Wetland Delineation	City/County: Brazil/Putnam	Sampling Date: <u>4/4/17</u>			
Applicant/Owner: IUPUI	State: _	IN Sampling Point: DP9			
Investigator(s): Sarah Wright; Jamie Furgason	_ Section, Township, Range: Section 2	20, Township 13 North, Range 5 West			
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none): none				
Slope (%): Lat: 39.5459	_ Long: <u>-86.9843</u>	Datum: <u>NAD83</u>			
Soil Map Unit Name: Sw- Stonelick Sandy Loam	N	WI classification: <u>None</u>			
Are climatic / hydrologic conditions on the site typical for this time of	year? Yes _O_ No _O_ (If no, e	explain in Remarks.)			
Are Vegetation, Soil, or Hydrology significan	tly disturbed? Are "Normal Circur	nstances" present? Yes 💽 No 🔘			
Are Vegetation, Soil, or Hydrology naturally	problematic? (If needed, explain	any answers in Remarks.)			
SUMMARY OF FINDINGS – Attach site map showin	ng sampling point locations, t	ransects, important features, etc.			
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No	Is the Sampled Area within a Wetland?	Yes No			
Remarks:					
VEGETATION – Use scientific names of plants.					

	Absolute	Dominan	t Indicator	Dominance Test worksheet		
Tree Stratum (Plot size: 301.	% Cover	Species?	<u>Status</u>	Number of Dominant Species	3	
1. Acer negundo	25	Yes	FAC	That Are OBL, FACW, or FAC	5	(A)
2. Acer saccharinum	35	Yes	FACW	Total Number of Dominant		
3. Populus deltoides	35	Yes	FAC	Species Across All Strata:	5	(B)
4.						. ,
5				Percent of Dominant Species	100	
	95	- Total Ca		That Are OBL, FACW, or FAC		(A/B)
Sapling/Shrub Stratum (Plot size: 15ft.)		- 10tai CC	Vei	Prevalence Index workshee	et:	
1				Total % Cover of:	Multiply by:	
2				OBL species	x 1 =	_
3				FACW species	x 2 =	_
			-		x 3 =	-
4		•			× 4 =	-
5		-	, — ———	FACO species	x 4 =	-
Herb Stratum (Plot size: 5ft.)	= Total Co	ver	UPL species	x 5 =	-
Hydrophyllum virginianum	20	Vec	FAC	Column Totals: 0	(A)	_ (B)
	20	103		Broucloppo Indox - R/A	\ _	
	20	Yes	FACW		<u> </u>	_
3			-	Hydrophytic Vegetation Ind	icators:	
4			-	1 - Rapid Test for Hydrop	ohytic Vegetation	
5				2 - Dominance Test is >5	50%	
6				3 - Prevalence Index is ≤	3.0 ¹	
7.				. 4 - Morphological Adapta	tions ¹ (Provide sup	porting
8		-		data in Remarks or on	n a separate sheet)	
0		-		Problematic Hydrophytic	Vegetation ¹ (Explai	n)
5						
10	40			¹ Indicators of hydric soil and w	wetland hydrology n	nust
Woody Vino Stratum (Plot aize: 5ft.	40	= Total Co	ver	be present, unless disturbed of	or problematic.	
1	·			Hydrophytic		
2				Present? Yes	$) N_0 \bigcirc$	
	0	= Total Co	ver			
Remarks: (Include photo numbers here or on a separate s	sheet.)					

S	ο	I	L
_	-	-	_

SOIL						Sampling Point: Dro
Profile Des	cription: (Describe	e to the depth	needed to document the indicator or	confirm	the absence	of indicators.)
Depth	Matrix		Redox Features			
(inches)	Color (moist)	%	Color (moist) Type ¹	Loc ²	Texture	Remarks
0-16	10YR 4/3	100			Clay	
¹ Type: C=C	Concentration, D=De	pletion, RM=R	Reduced Matrix, MS=Masked Sand Grain	ıs.	² Location	: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:				Indicators	for Problematic Hydric Soils ³ :
Histoso	l (A1)		Sandy Gleyed Matrix (S4)		Coast	Prairie Redox (A16)
Histic E	pipedon (A2)		Sandy Redox (S5)		Dark S	Surface (S7)
Black H	listic (A3)		Stripped Matrix (S6)		Iron-M	anganese Masses (F12)
Hydrog	en Sulfide (A4)		Loamy Mucky Mineral (F1)		Very S	hallow Dark Surface (TF12)
Stratifie	d Layers (A5)		Loamy Gleyed Matrix (F2)		Other	(Explain in Remarks)
2 cm M	uck (A10)		Depleted Matrix (F3)			
Deplete	ed Below Dark Surfa	ce (A11)	Redox Dark Surface (F6)		2	
Thick D	ark Surface (A12)		Depleted Dark Surface (F7)		Indicators	s of hydrophytic vegetation and
Sandy	Mucky Mineral (S1)		Redox Depressions (F8)		wetland	d hydrology must be present,
<u> </u>	ucky Peat or Peat (S	53)			uniess	disturbed or problematic.
Restrictive	Layer (If observed)):				
Type:			_		Hydric Soil	Present? Yes No 💿
Depth (ir	nches):					
Remarks:						
HYDROLO)GY					
Wetland Hy	drology Indicators	•				
Primary Ind	icators (minimum of	one is require	d: check all that apply)		Seconda	any Indicators (minimum of two required)
		one is require				
	e vvater (A1)					race Soli Cracks (B6)
	ater Table (A2)		Aquatic Fauna (B13)			inage Patterns (B10)
Saturat	ion (A3)		True Aquatic Plants (B14)		Dry-	-Season Water Table (C2)
	Marks (B1)		Hydrogen Sulfide Odor (C1)			yfish Burrows (C8)
Sedime	ent Deposits (B2)		Oxidized Rhizospheres on Living	g Roots (0	C3) 📙 Satu	uration Visible on Aerial Imagery (C9)
Drift De	eposits (B3)		Presence of Reduced Iron (C4)		Stur	nted or Stressed Plants (D1)
Algal M	at or Crust (B4)		Recent Iron Reduction in Tilled	Soils (C6)	Geo	omorphic Position (D2)
Iron De	posits (B5)		Thin Muck Surface (C7)		🖌 FAC	C-Neutral Test (D5)
Inundat	ion Visible on Aerial	Imagery (B7)	Gauge or Well Data (D9)			
Sparse	y Vegetated Concav	ve Surface (B8	3) 🔲 Other (Explain in Remarks)			
Field Obse	rvations:	~	<u> </u>			
Surface Wa	ter Present?	Yes <u> </u>	Depth (inches):			
Water Table	Present?	Yes_O No	Depth (inches):			
Saturation F	Present?		Depth (inches):	Wetla	nd Hydrolog	v Present? Yes O No 💿
(includes ca	pillary fringe)					
Describe Re	ecorded Data (strear	n gauge, mon	itoring well, aerial photos, previous inspe	ections), if	f available:	

Remarks:

Project/Site: Big Walnut Creek- Wetland	d Delineation	City/County: Brazil/Putnam	ity/County: Brazil/Putnam		
Applicant/Owner: <u>IUPUI</u>		:	State: IN	Sampling Point: DI	² 10
Investigator(s): Sarah Wright; Jamie Fu	rgason	Section, Township, Range: Section	ection 29, Townsh	ip 13 North, Range	5 West
Landform (hillslope, terrace, etc.):		Local relief (concav	/e, convex, none):	none	
Slope (%): Lat: 39.5442		Long: <u>-86.9846</u>		Datum: NAD83	
Soil Map Unit Name: Sw- Stonelick San	dy Loam		NWI classific	ation: PFO1A	
Are climatic / hydrologic conditions on the	e site typical for this time of ye	ear? Yes <u>O</u> No <u>O</u>	(If no, explain in R	emarks.)	
Are Vegetation, Soil, or H	lydrology significantly	disturbed? Are "Normal	Circumstances" p	resent? Yes 💽	_ No <u>O</u>
Are Vegetation, Soil, or H	lydrology naturally pr	oblematic? (If needed, e	explain any answe	s in Remarks.)	
SUMMARY OF FINDINGS - At	tach site map showing	g sampling point locatio	ons, transects	, important feat	ures, etc.
Hydrophytic Vegetation Present?	Yes O No O				
Hydric Soil Present?	Yes No	Is the Sampled Area	0	\frown	
Wetland Hydrology Present?	Yes No	within a Wetland?	Yes 🕛	No	
Remarks:					
VEGETATION - Use scientific na	ames of plants.				

	Absolute	Dominar	nt Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 501.)	% Cover	Species	<u>Status</u>	Number of Dominant Species
1. Acer negundo	20	Yes	FAC	That Are OBL, FACW, or FAC: 4 (A)
2. Aesculus glabra	20	Yes	FAC	Total Number of Dominant
3. Populus deltoides	30	Yes	FAC	Species Across All Strata: 4 (B)
4.				(-,
5				Percent of Dominant Species
···	70	- - Total Co		That Are OBL, FACW, or FAC: (A/B)
Sapling/Shrub Stratum (Plot size: 15ft.)		- 10(a) C(2461	Prevalence Index worksheet:
1.				Total % Cover of: Multiply by:
2.			-	OBL species x 1 =
3			-	FACW species x 2 =
۵				FAC species x 3 =
5		-	•	FACU species x 4 =
0		- - Total Cr		
Herb Stratum (Plot size: ^{5ft.})		- 101ai Ct	Jver	$\begin{array}{c} \text{Column Totals:} \\ 0 \\ \text{Column Totals:} \\ 0 \\ \text{(A)} \\ \text{(B)} \\ \end{array}$
1. Elymus riparius	10	No	FAC	
2 Hydrophyllum virginianum	15	No	FAC	Prevalence Index = B/A =
3 Verbesina alternifolia	20	Yes	FACW	Hydrophytic Vegetation Indicators:
A.			-	1 - Rapid Test for Hydrophytic Vegetation
5			-	2 - Dominance Test is >50%
5			-	3 - Prevalence Index is $\leq 3.0^{1}$
o		•	·	A - Morphological Adaptations ¹ (Provide supporting
7		-		data in Remarks or on a separate sheet)
8				Problematic Hydrophytic Vegetation ¹ (Explain)
9				
10			_	¹ Indicators of hydric soil and wetland hydrology must
5ft	45	= Total Co	over	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size: <u>Jit.</u>)				
1				Hydrophytic
2			_	Vegetation Present? Ves I No
	0	= Total Co	over	
Remarks: (Include photo numbers here or on a separate s	sheet.)			

S	ο	I	L
_	-	-	_

nches)	Color (moist)	%	Color (moist) % Type	¹ Loc ²	Texture	Remarks	
-16	10YR 3/3	100			Clay		
				'	<u> </u>		
				· ·			
				_			
			· · ·	· ·			
				-			
ype: C=Co	oncentration, D=De	pletion, RM=Re	duced Matrix, MS=Masked Sand	Grains.	Location: PL=	Pore Lining, M=Matrix.	- ³ .
aric Soli	Indicators:				Indicators for Pr	Dedew (A40)	s :
HISTOSOI	(A1) Singdon (A2)		Sandy Gleyed Matrix (S4	•)		e Redox (A16)	
Black Hi	istic (A3)		Stripped Matrix (S6)			ese Masses (F12)	
Hvdroae	en Sulfide (A4)		Loamy Mucky Mineral (F	1)	Verv Shallow	v Dark Surface (TF12)	
Stratified	d Layers (A5)		Loamy Gleyed Matrix (F2	2)	Other (Explai	in in Remarks)	
2 cm Mu	uck (A10)		Depleted Matrix (F3)				
Depleted	d Below Dark Surfac	:e (A11)	Redox Dark Surface (F6				
Thick Da	ark Surface (A12)		Depleted Dark Surface (=7)	³ Indicators of hyd	drophytic vegetation and	d
Sandy M	lucky Mineral (S1)		Redox Depressions (F8)		wetland hydro	ology must be present,	
5 CM 1/1					uniess distur	bed or problematic.	
	Icky Peat of Peat (S				1		
estrictive I	Layer (if observed)	:				_	-
Type:	Layer (if observed)	:	-		Hydric Soil Prese	ent? Yes_ON	• •
Type: Depth (inc	Layer (if observed)	: 	-		Hydric Soil Prese	ent? Yes O N	• •
estrictive I Type: Depth (ind	ches):	:	-		Hydric Soil Prese	ent? Yes_O N	• _•
bestrictive I Type: Depth (ind marks:	Ches):	: 	-		Hydric Soil Prese	ent? Yes_O N	• •
strictive I Type: Depth (ind marks: DROLO	Ches): GY drology Indicators	: 	-		Hydric Soil Prese	ent? Yes_O N	• •
Depth (ind marks: DROLO	GY GY GY GY GY Grology Indicators Cators (minimum of	:	- - - - - - - - - - - - - - - - - - -		Hydric Soil Prese	ent? Yes _O N	
strictive I Type: Depth (ind marks: DROLO tiland Hyd mary India Surface	GY drology Indicators Water (A1)	: : : : : : : : : : : : : :	check all that apply)		Hydric Soil Prese	ent? Yes _O N	
strictive I Type: Depth (ind marks: DROLO etland Hyd mary India Surface High Wa	GY drology Indicators cators (minimum of Water (A1) ater Table (A2)	: <u> pne is required:</u>			Hydric Soil Prese	ent? Yes N licators (minimum of two oil Cracks (B6) Patterns (B10)	
strictive I Type: Depth (ind marks: DROLO etland Hyd mary India Surface High Wa Saturatio	GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3)	: 			Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2)	o _O
Depth (ind marks: DROLO DROLO Detland Hyd mary Indid Surface High Wa Saturatid Water M	GY drology Indicators cators (minimum of water (A1) ater Table (A2) on (A3) larks (B1)	: pne is required:	- - - - - - - - - - - - - -)	Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8)	
strictive I Type: Depth (ind marks: DROLO etland Hyd mary Indic Surface High Wa Saturatic Water M Sedimer	GY drology Indicators cators (minimum of water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) weith (D2)	:	- - - - - - - - - - - - - -) Living Roots ((Hydric Soil Prese	ent? Yes N licators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8) I Visible on Aerial Image	• _ •
Depth (ind marks: DROLO tiland Hyd mary India Surface High Wa Saturatia Water M Sedimer Drift Dep	GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3)	: : : : : : : : : : : : : :	check all that apply) Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1 Oxidized Rhizospheres on Presence of Reduced Iron) Living Roots (((C4)	Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8) i Visible on Aerial Image r Stressed Plants (D1) eis Desities (D2)	• _•
strictive I Type: Depth (ind marks: Depth (ind marks: Drack Satrace High Wa Saturatio Water M Sedimer Drift Dep Algal Ma	GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	: <u> pne is required:</u>	check all that apply) Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1 Oxidized Rhizospheres on Presence of Reduced Iron Recent Iron Reduction in T This Muck Surface (C7)) Living Roots (((C4) Illed Soils (C6)	Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8) 1 Visible on Aerial Image r Stressed Plants (D1) nic Position (D2) rel Tosi (D5)	• _•
strictive I Type: Depth (ind marks: DROLO etland Hyd mary Indid Surface High Wa Saturatio Vater M Sedimer Drift Dep Algal Ma Iron Dep	GY drology Indicators cators (minimum of a Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial	: pne is required: pne (B7)	check all that apply) Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1 Oxidized Rhizospheres on Presence of Reduced Iron Recent Iron Reduction in T Thin Muck Surface (C7) Cauge or Well Data (D9)) Living Roots (((C4) Iled Soils (C6)	Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8) i Visible on Aerial Image r Stressed Plants (D1) nic Position (D2) ral Test (D5)	o o require
DROLO Type: Depth (ind marks: DROLO Transformer DROLO Transformer Drift Dep Algal Ma Iron Dep Inundation Snarsch	GY GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial (Vegetated Concay	Imagery (B7)	check all that apply) Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1 Oxidized Rhizospheres on Presence of Reduced Iron Recent Iron Reduction in T Thin Muck Surface (C7) Gauge or Well Data (D9)) Living Roots (((C4) Iled Soils (C6)	Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8) o Visible on Aerial Image r Stressed Plants (D1) nic Position (D2) ral Test (D5)	o
	GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations:	Imagery (B7) e Surface (B8)	 <u>check all that apply</u>) Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1 Oxidized Rhizospheres on Presence of Reduced Iron Recent Iron Reduction in T Thin Muck Surface (C7) Gauge or Well Data (D9) Other (Explain in Remarks)) Living Roots (((C4) Iled Soils (C6)	Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8) I Visible on Aerial Image r Stressed Plants (D1) nic Position (D2) ral Test (D5)	o
DEPOLO Type: Depth (ind marks: Depth (ind marks: DEPOLO etland Hyd imary India Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Inundatio Sparsely etd Obser	GY GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: er Present?	Imagery (B7) e Surface (B8)	check all that apply) Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1 Oxidized Rhizospheres on Presence of Reduced Iron I Recent Iron Reduction in T Thin Muck Surface (C7) Gauge or Well Data (D9) Other (Explain in Remarks)) Living Roots ((C4) Iled Soils (C6)	Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8) n Visible on Aerial Image r Stressed Plants (D1) nic Position (D2) ral Test (D5)	o
DEPOLO emarks: Depth (ind emarks: Depth (ind emarks: DEPOLO etland Hyd imary India Surface High Wa Saturatia Water Ma Sedimer Drift Dep Algal Ma Iron Dep Inundatia Sparsely etd Obser urface Water Table	GY GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: er Present?	Imagery (B7) e Surface (B8)	check all that apply) Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1 Oxidized Rhizospheres on Presence of Reduced Iron Recent Iron Reduction in Thin Muck Surface (C7) Gauge or Well Data (D9) Other (Explain in Remarks) Depth (inches):) Living Roots (((C4) Iled Soils (C6)	Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8) a Visible on Aerial Image r Stressed Plants (D1) nic Position (D2) ral Test (D5)	o equire
DEPTH (independent of the service of the servi	GY GY drology Indicators cators (minimum of a Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Visible on Aerial y Vegetated Concav vations: er Present? Present?	Imagery (B7) e Surface (B8) 'es No 'es No	check all that apply) Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1 Oxidized Rhizospheres on Presence of Reduced Iron Recent Iron Reduction in T Thin Muck Surface (C7) Gauge or Well Data (D9) Other (Explain in Remarks) Oppth (inches): Depth (inches):) Living Roots (((C4) Iled Soils (C6)	Hydric Soil Prese	ent? Yes N icators (minimum of two oil Cracks (B6) Patterns (B10) on Water Table (C2) Burrows (C8) a Visible on Aerial Image r Stressed Plants (D1) nic Position (D2) ral Test (D5)	o

Bankfull Cross Section Plot

Channel Classification

Stream Classification Sheet

sin	Big Walnut Creek	Drainage Aroa:	202 496 acros	316 /	mi ²
SIII.		Dialilage Alea.	202,490 acres	510.4	
/p.&Rge			Sec.&Qtr.:		
oss-Sec	ction Monuments (Lat./Long.):			Date	: 4/14/1
oservers	E BJM, JDF, BWM, DRH			Valley Type	: U-GL
	Bankfull WIDTH (W _{bkf})				
	WIDTH of the stream channel at ba	nkfull stage elevation, in a riffl	e section.	138.5	ft
	Bankfull DEPTH (d _{bkf})				7
	Mean DEPTH of the stream channe	l cross-section, at bankfull sta	ge elevation, in a riffle		
	section ($d_{bkf} = A / W_{bkf}$).			4.04	ft
	Bankfull X-Section AREA (A	A _{bkf})			1
	AREA of the stream channel cross-	section, at bankfull stage elev	ation, in a riffle section.		
				559.5	ft ²
	Width/Depth Ratio (W _{bkf} / d	_{bkf})			
	Bankfull WIDTH divided by bankfull	mean DEPTH, in a riffle section	on.	34.3	ft/ft
	Maximum DEPTH (dmb/f)				7
	Maximum depth of the bankfull char	nnel cross-section, or distance	between the bankfull stage		
	and Thalweg elevations, in a riffle se	ection.		6.24	ft
	WIDTH of Flood-Prone Are	a (W _{fpa})			٦
	Twice maximum DEPTH, or (2 x d _m	_{bkf}) = the stage/elevation at wh	nich flood-prone area WIDTH	I	
	is determined in a riffle section.			415	ft
	Entrenchment Ratio (ER)				7
	The ratio of flood-prone area WIDTH	H divided by bankfull channel	WIDTH (W_{fpa}/W_{bkf}) (riffle		
	section).			3.0	ft/ft
	Channel Materials (Particle	e Size Index)D ₅₀			7
	The D_{50} particle size index represen	ts the mean diameter of chan	nel materials, as sampled		
	from the channel surface, between t	the bankfull stage and Thalwe	g elevations.	4	
				4	
	Water Surface SLOPE (S)				
	Channel slope = "rise over run" for a length, with the "riffle-to-riffle" water	a reach approximately 20–30 I surface slope representing th	bankfull channel widths in e gradient at bankfull stage.		
				0.00063	ft/ft
	Sinuosity is an index of channel patt	ern determined from a ratio o	of stream length divided by		
	valley length (SL / VL); or estimated	from a ratio of valley slope di	vided by channel slope (VS /		
	S).			1.03	
					7
		4/5	(See Figure 2-14	.)	

BEHI Calculations

Worksheet 5-8. Form to calculate Bank Erosion Hazard Index (BEHI) variables and an overall BEHI rating (Rosgen, 1996, 2001a). Use **Figure 5-19** with BEHI variables to determine BEHI score.

Stream:	Big Walr	ut Creek			Location	: Brazil, IN		
Station:					Observers	BJM		
Date:	4/14/17	Str	eam Type:	C4/5	Valley Type	: U-GL-TP		
					5 51			BEHI Score
				Study	[,] Bank Heigl	ht / Bankfull He	eight(C)	(Fig. 5-19)
		Study		Bankfull				
		Bank	11.8	Height	4.0	(A)/(B)=	3.0 _(C)	10.0
		Height (ft) =	(A)	(ft) =	(B		(0)	
				R	oot Depth /	Study Bank H	eight (E)	
		Root	_	Study				
		Depth	4 (D)	Bank	11.8	(D)/(A) =	0.3	5.5
		(ft) =	(U)	Height (ft) =		y whited Deat Dea		
					weig	ghted Root Del	nsity (G)	
				Root	000/	(E) x (E) -	07.4	<u> </u>
					80%	$(\mathbf{F}) \times (\mathbf{E}) =$	27.1 (G)	6.3
				ds 70 –	(r	// Bank A	nale (H)	
						Bank		
						Angle	60	4.0
						as Degrees =	(H)	
						Surface Prote	ection (I)	
						Surface	Г ́Т	
						Protection	90%	1.5
						as % =	(1)	
		Bank Materi	al Adjustmer	nt:				
	Bedrock	Overall Very Low	BEHI)	_	L	Ba	ank Material	
	Boulders	(Overall Low BEI	HI)				Adjustment	5.0
	Cobble (S	ubtract 10 points	if uniform medi	um to large cobb	ole)			
	Gravel or	Composite Ma	atrix (Add 5–10) points dependir	ng on	Stratification /	Adjustment	
	percentage	of bank material	that is compose	ed of sand)		Add 5–10 points, de	epending on	
	Sand (Add	10 points)				relation to bankfull	stage	5.0
	Sit/Clay (no adjustment)					-	

Phankuch-Rosgen Stability Calculations

Stream:							Loc	ation:		Valley Type				/ Type:	: Observers:					Date:						
Location	Kov	Cater	orv			Exce	ellent			Good			bod					Fa	air						Poor	
Location	Ney	Caley	ory		0	Descriptio	n		Rating		Description Rating Description F		Rating			Descr	iption	Rating								
	1	Landform s	slope	Bank slo	pe gradi	ent <30%			2	Bank slo	pe gradie	ent 30-4	0%.	-	4	Bank slo	ope gradi	ent 40-6	0%.		6	Bank slo	ope gradi	ent > 60	1%.	8
unks	2	Mass erosi	ion	No evide erosion.	ence of pa	ast or fut	ure mass		3	Infreque potential	nt. Mostly	y healed	over. Lov	w future	6	Frequer yearlong	nt or large g.	e, causing	g sedime	ent nearly	′ 9	Frequer yearlon	it or large g OR imn	e, causin ninent da	ng sediment nearly anger of same.	12
er ba	3	Debris jam potential	ı	Essentia area.	Illy abser	nt from im	mediate o	channel	2	Present,	but mos	tly small	twigs and	d limbs.	4	Moderat sizes.	te to heav	vy amour	nts, mos	tly larger	6	Modera larger si	te to heav zes.	vy amou	ints, predominantly	8
Uppe	4	Vegetative protection	e bank	> 90% pl suggest mass.	lant dens a deep, o	sity. Vigor dense soi	and varie	ety root	3	70–90% vigor sug mass.	density. ggest les	Fewer sp s dense o	pecies or or deep r	less oot	6	50–70% species mass.	density. from a st	Lower vi hallow, di	gor and scontinu	fewer Jous root	9	<50% d indicatir mass.	ensity plu Ig poor, c	is fewer liscontin	species & less vigor uous and shallow root	12
	5	Channel capacity		Bank heig stage. Wid width/dept = 1.0.	hts sufficio dth/depth i th ratio = 1	ent to cont ratio depar 1.0. Bank-h	ain the bar ture from r leight Rati	kfull eference o (BHR)	1	Bankfull s Width/dep width/dep (BHR) = 1	tage is con th ratio de th ratio = 1 .0-1.1.	ntained wi eparture fro 1.0–1.2. Bi	thin banks om referer ank-Heigh	i. nce t Ratio	2	Bankfull stage is not contained. Width/depth ratio departure from reference width/depth ratio = 1.2–1.4. Bank-Height Ratio (BHR) = 1.1–1.3.		3	Bankfull stage is not contained; common with flows less than ba departure from reference width/ Height Ratio (BHR) > 1.3.		ed; over-bank flows are bankfull. Width/depth rati hth/depth ratio > 1.4. Bank	4				
S	6	Bank rock content		> 65% w common	vith large 1.	angular t	oulders.	12"+	2	40–65%. cobbles	. Mostly t 6–12".	boulders	and sma	ll	4	20–40%	b. Most in	the 3-6"	diamete	er class.	6	<20% ro less.	ock fragm	ents of	gravel sizes, 1–3" or	8
er banl	7	Obstruction flow	ns to	Rocks ar pattern v bed.	nd logs fi v/o cuttin	rmly imbe g or depo	edded. Floosition. St	ow able	2	Some pr currents Obstruct	esent ca and mine ions fewe	or pool fil er and le	osive cros lling. ss firm.	SS	4	Moderat move wi and poo	tely frequ ith high fl ol filling.	ent, unsta ows caus	able obs sing ban	structions k cutting	6	Frequer bank er channel	it obstruct osion yea migration	tions an arlong. S n occurr	d deflectors cause ediment traps full, ing.	8
Low	8	Cutting		Little or r	none. Infi	requent ra	aw banks	<6".	4	Some, in constrict	itermitter ions. Rav	ntly at ou w banks	tcurves a may be u	ind ip to 12".	6	Significa overhan	ant. Cuts Igs and sl	12–24" h loughing	igh. Roo evident.	ot mat	12	Almost (Failure (continuou of overha	us cuts, s ings freq	some over 24" high. juent.	16
	9	Deposition	1	Little or r bars.	no enlarg	jement of	channel	or point	4	Some ne coarse g	ew bar in ravel.	crease, r	nostly fro	om	8	8 Moderate deposition of new gravel and coarse sand on old and some new bars. 12 Extensive deposit of predominantly fi particles. Accelerated bar developme		dominantly fine r development.	16							
	10	Rock angu	ularity	Sharp eo rough.	dges and	corners.	Plane su	rfaces	1	Rounded smooth a	d corners and flat.	s and edg	jes. Surfa	aces	2	Corners and edges well rounded in 2 dimensions. 3 Well rounded in all dimensions, surface smooth.		nsions, surfaces	4							
	11	Brightness	5	Surfaces not brigh	s dull, dai nt.	rk or stair	ned. Gene	erally	1	Mostly d surfaces	ull, but m	nay have	<35% br	ight	2	Mixture mixture	dull and I range.	bright, i.e	., 35–65	5%	3	Predom scoured	inantly br surfaces	right, > 6 s.	5%, exposed or	4
E	12	Consolidat particles	tion of	Assorted overlapp	d sizes tig bing.	ghtly pack	ked or		2	Moderate	ely packe	ed with so	ome over	rlapping.	4	Mostly lo overlap.	oose ass	ortment v	vith no a	apparent	6	No pack moved.	ing evide	ent. Loos	se assortment, easily	8
3otto	13	Bottom siz distribution	e n	No size (80–100%	change e %.	evident. S	table mat	erial	4	Distributi 50–80%	ion shift l	light. Stal	ble mater	rial	8	Moderat 20–50%	te change 5.	e in sizes	. Stable	material	s 12	Marked 0–20%.	distributi	on chan	ge. Stable materials	16
	14	Scouring a deposition	and	<5% of b deposition	pottom af on.	fected by	scour or		6	5–30% a where gr pools.	ffected.	Scour at epen. Sc	constricti ome depo	ions and osition in	12	30–50% obstruct Some fil	affected tions, con lling of po	l. Deposit strictions ools.	s and so and be	cour at nds.	18	More the change	an 50% c nearly ye	of the bo earlong.	ttom in a state of flux o	r 24
	15	Aquatic vegetation	I	Abundar perennia	nt growth al. In swif	moss-lik t water, to	e, dark gr oo.	een	1	Commor pool area	n. Algae f as. Moss	forms in I s here, too	low veloc o.	ity and	2	Present Seasona	but spott al algae g	ty, mostly growth ma	in back akes roo	water. ks slick.	3	Perenni short-te	al types s rm bloom	scarce o I may be	r absent. Yellow-green e present.	4
						Exc	cellent	total =	0				Good	total =	2	2 Fair total = 39 Poor to		Poor total	96							
Stream typ	e	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D3	D4	D5	D6	T	One well tests	407
Good (Stable	e)	38-43	38-43	54-90	60-95	60-95	50-80	38-45	38-45	40-60	40-64	48-68	40-60	38-50	38-50	60-85	70-90	70-90	60-85	85-10	7 85-107	85-107	67-98	Î –	Grand total =	137
Fair (Mod. ur Poor (Unstab	nstable) ble)	44-47 4 48+	44-47 48+	91-129 130+	96-132 133+	96-142 143+	81-110 111+	46-58 59+	46-58 59+	61-78 79+	65-84 85+	69-88 89+	61-78 79+	51-61 62+	51-61 62+	86-105 106+	91-110 111+	91-110 111+	86-105 106+	5 108-13 133+	2 108-132 133+	108-132 133+	99-125 126+		Existing stream type =	C4
Stream typ Good (Stable	e e)	DA3 40-63	DA4 40-63	DA5 40-63	DA6 40-63	E3 40-63	E4 50-75	E5 50-75	E6 40-63	F1 60-85	F2 60-85	F3 85-110	F4 85-110	F5 90-115	F6 80-95	G1 40-60	G2 40-60	G3 85-107	G4 85-107	G5 7 90-112	G6 2 85-107		•	-	*Potential stream type =	C4
Fair (Mod. ur	nstable)	64-86	64-86	64-86	64-86	64-86	76-96	76-96	64-86	86-105	86-105	111-125	111-125	116-130	6-130 96-110 61-78 61-78 108-120 108-120 113-125 108-120 Modified chann			nnel								
Poor (Unstab	ole)	87+	87+	87+	87+	87+	97+	97+	87+	106+	106+	126+	126+	131+	131+ 111+ 79+ 79+ 121+ 126+ 121+ stability rating =				ng =							
															ż	*Rating	should b	e adjust	ted to p	otential	stream ty	/pe, not	existing		Poor (Unsta	ıble)

Worksheet 5-7. Pfankuch (1975) stream channel stability rating procedure, as modified by Rosgen (1996, 2001b).

Stream:				_			Loc	ation:		Valley Ty			/ Type:			Obse	: Observers:				Date:					
Location	Kev	Categ	orv			Exce	ellent			Good					Fa	air						Poor				
Location	1.0,	outog	.,y		0	Descriptio	n		Rating		C	Descriptio	n		Rating		[Descriptio	n		Rating		P	Descri	iption	Rating
(0	1	Landform :	slope	Bank sid	pe gradi	ent <30%			2	Bank sio	pe gradie	ent 30-4	0%.	futuro	4	Bank sid	ope gradi	ent 40-bi)%.	-t poorly	6	Bank sig	Erequent or large causion		%.	8
anks	2	Mass eros	sion	No evide erosion.	ence or p	ast or ruu	ure mass		3	potential	nt. Mosuj	y nealeu	over. Lo	wituture	6	requer yearlong	nt or large g.	, causing	Seame	nt néany	9	Frequei yearlong	g OR imm	inent da	ig sediment nearly anger of same.	12
er ba	3	Debris jarr potential	ו	Essentia area.	Illy abser	nt from im	mediate	channel	2	Present,	but mos	tly small	twigs and	d limbs.	4	Moderat sizes.	te to heav	/y amoun	ts, most	ly larger	6	Modera larger si	te to heav zes.	vy amou	nts, predominantly	8
Uppe	4	Vegetative protection	e bank	> 90% p suggest mass.	lant dens a deep, o	sity. Vigor dense soi	and varie il-binding	ety root	3	70–90% vigor sug mass.	density. gest les	Fewer sp s dense o	pecies or or deep r	r less root	6	50–70% species mass.	density. from a st	Lower vi nallow, di	gor and scontinu	fewer Ious root	9	<50% d indicatir mass.	ensity plu ig poor, d	s fewer iscontin	species & less vigor uous and shallow root	12
	5	Channel capacity		Bank heig stage. Wie width/dep = 1.0.	hts sufficie dth/depth i th ratio = 1	ent to cont ratio depar 1.0. Bank-H	ain the bar ture from r Height Rati	nkfull eference o (BHR)	1	Bankfull s Width/dep width/dep (BHR) = 1	tage is cor oth ratio de th ratio = 1 .0-1.1.	ntained wite parture fro 1.0–1.2. Ba	thin banks om referer ank-Heigh	s. nce nt Ratio	2	Bankfull s departure 1.2–1.4. B	stage is no e from refe Bank-Heigl	t contained rence widtl ht Ratio (B	d. Width/o n/depth ra HR) = 1.1	lepth ratio atio = I–1.3.	3	Bankfull s common departure Height Ra	stage is not with flows I from refer atio (BHR)	t containe less than rence wid > 1.3.	ed; over-bank flows are bankfull. Width/depth ratio lth/depth ratio > 1.4. Bank-	4
S	6	Bank rock content		> 65% w common	vith large 1.	angular t	ooulders.	12"+	2	40–65%. cobbles	. Mostly t 6–12".	boulders	and sma	all	4	20–40%	b. Most in	the 3-6"	diamete	er class.	6	<20% ro less.	ock fragm	ents of g	gravel sizes, 1–3" or	8
er banl	7	Obstructio flow	ns to	Rocks ar pattern v bed.	nd logs fi v/o cuttin	rmly imbe g or depo	edded. Fl osition. St	ow able	2	Some pr currents Obstruct	esent ca and mine ions fewe	using ero or pool fil er and les	osive cros lling. ss firm.	SS	4	Moderat move wi and poo	tely frequ ith high fl ol filling.	ent, unsta ows caus	able obs ing ban	tructions cutting	6	Frequer bank er channel	it obstruct osion yea migratior	tions an rlong. S n occurri	d deflectors cause ediment traps full, ing.	8
Low	8	Cutting		Little or r	none. Infi	requent ra	aw banks	<6".	4	Some, in constrict	itermitter ions. Rav	ntly at out w banks i	tcurves a may be u	and up to 12".	6	Significa overhan	ant. Cuts Igs and sl	12–24" h loughing	igh. Roc evident.	it mat	12	Almost (Failure (continuou of overhar	is cuts, s ngs freq	some over 24" high. uent.	16
	9	Deposition	1	Little or i bars.	no enlarg	jement of	channel	or point	4	Some ne coarse g	ew bar in ravel.	crease, n	nostly fro	om	8	Moderate deposition of new gravel and coarse sand on old and some new bars. 12 Extensive deposit of predominantly particles. Accelerated bar developm		lominantly fine r development.	16							
	10	Rock angu	ularity	Sharp eo rough.	dges and	corners.	Plane su	rfaces	1	Rounded smooth a	d corners and flat.	s and edg	jes. Surfa	aces	2	Corners and edges well rounded in 2 dimensions. 2 dimensions. 3 Well rounded in all dimensions, surface smooth.		nsions, surfaces	4							
	11	Brightness	8	Surfaces not brigh	s dull, dai nt.	rk or stair	ned. Gene	erally	1	Mostly d surfaces	ull, but m	nay have	<35% br	right	2	Mixture mixture	dull and I range.	oright, i.e	., 35–65	%	3	Predom scoured	inantly bri surfaces	ight, > 6	5%, exposed or	4
E	12	Consolidat particles	tion of	Assorted overlapp	d sizes tig bing.	ghtly pack	ked or		2	Moderate	ely packe	ed with so	ome over	rlapping.	4	Mostly lo overlap.	oose ass	ortment w	/ith no a	pparent	6	No pack moved.	ing evide	nt. Loos	se assortment, easily	8
3ottc	13	Bottom siz distributior	re n	No size (80–100%	change e %.	evident. S	table mat	erial	4	Distributi 50–80%	ion shift l	light. Stal	ble mater	rial	8	Moderat 20–50%	te change 5.	e in sizes.	. Stable	materials	12	Marked 0–20%.	distributic	on chang	ge. Stable materials	16
	14	Scouring a deposition	and	<5% of b deposition	pottom af on.	fected by	scour or		6	5–30% a where gr pools.	iffected.	Scour at epen. Sc	constricti ome depo	tions and osition in	12	30–50% obstruct Some fil	affected tions, con lling of po	. Deposit strictions ools.	s and so and bei	our at nds.	18	More that change	an 50% o nearly ye	f the bot arlong.	ttom in a state of flux or	. 24
	15	Aquatic vegetation	1	Abundar perennia	nt growth al. In swif	moss-lik t water, to	e, dark gr oo.	reen	1	Commor pool area	n. Algae f as. Moss	forms in I here, too	low veloc o.	city and	2	Present Seasona	but spott al algae g	y, mostly prowth ma	in back akes roc	water. ks slick.	3	Perenni short-te	al types s rm bloom	carce o may be	r absent. Yellow-green, present.	4
						Exc	cellent	total =	4				Good	total =	24	4 Fair total = 33 Poor to		Poor total =	40							
Stream typ	e	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D3	D4	D5	D6	Ĩ	One in distant	404
Good (Stable	e)	38-43	38-43	54-90	60-95	60-95	50-80	38-45	38-45	40-60	40-64	48-68	40-60	38-50	38-50	60-85	70-90	70-90	60-85	85-107	85-107	85-107	67-98		Grand total =	101
Fair (Mod. ur Poor (Unstab	nstable) ble)	44-47 48+	44-47 48+	91-129 130+	96-132 133+	96-142 143+	81-110 111+	46-58 59+	46-58 59+	61-78 79+	65-84 85+	69-88 89+	61-78 79+	51-61 62+	51-61 62+	86-105 106+	91-110 111+	91-110 111+	86-105 106+	108-132 133+	2 108-132 133+	108-132 133+	99-125 126+		Existing stream type =	C4
Stream typ Good (Stable	e e)	DA3 40-63	DA4 40-63	DA5 40-63	DA6 40-63	E3 40-63	E4 50-75	E5 50-75	E6 40-63	F1 60-85	F2 60-85	F3 85-110	F4 85-110	F5 90-115	F6 80-95	G1 40-60	G2 40-60	G3 85-107	G4 85-107	G5 90-112	G6 85-107				*Potential stream type =	C4
Fair (Mod. ur	nstable)	64-86	64-86	64-86	64-86	64-86	76-96	76-96	64-86	86-105	86-105	111-125	111-125	5 116-130	30 96-110 61-78 61-78 108-120 108-120 113-125 108-120 Modified channel				nnel							
Poor (Unstab	ole)	87+	87+	87+	87+	87+	97+	97+	87+	106+	106+	126+	126+	131+	111+	79+	79+	121+	121+	126+	121+				stability ratir	ng =
															,	*Rating	should b	e adjust	ed to p	otential	stream ty	ype, not	existing.		Fair (Mod. Uns	stable)

Worksheet 5-7. Pfankuch (1975) stream channel stability rating procedure, as modified by Rosgen (1996, 2001b).

Appendix 3:Watershed-scale Assessment Data & Calculations

Land Use Change Map and Tabular Summary

Watershee	d Land Us	se by Yea	r	
	(%)			
Land Use Description	1992	2001	2006	2011
Open Water	0.5%	0.5%	0.5%	0.5%
Urban	1.1%	3.5%	4.1%	3.7%
Barren / Rock	0.0%	0.0%	0.0%	0.0%
Forested	16.6%	23.0%	23.0%	23.1%
Shrub / Scrub	0.0%	0.0%	0.0%	0.0%
Grassland / Herbaceous	0.0%	0.6%	0.7%	0.6%
Agricultural	81.7%	72.3%	71.6%	72.1%
Wetland	0.1%	0.0%	0.0%	0.0%
	100.00%	100.00%	100.00%	100.00%

Approximate Bankfull Location Map and Bankfull Dimension Comparison

		Approximate Bankfull	Predicted	Predicted	Predicted	Departure from
Measurement Location	Drainage Area [*]	Width ^{**}	Bankfull Width ^{***}	Bankfull Depth ^{***}	Bankfull Area ^{***}	Expected
(Stationing from Site Visit Map)	(sq. mi.)	(ft)	(ft)	(ft)	(ft ²)	(%)
Big Walnut Creek @ County						
Boundary	119.4	85.0	87	3.4	296	-2%
Big Walnut Creek at USGS Gage						
03357330 (CR 550 East)	131.0	95.0	90	3.5	309	6%
Big Walnut Creek at Plum Creek	154.6	105.0	95	3.6	335	11%
Big Walnut Creek at Bledsoe Branch	162.6	110.0	96	3.6	344	14%
Big Walnut Creek at Clear Creek	194.4	120.0	102	3.7	375	18%
Big Walnut Creek at Dry Branch	208.0	110.0	104	3.7	388	6%
Big Walnut Creek at Snyder Branch	215.5	110.0	105	3.8	394	4%
Big Walnut Creek at Little Walnut						
Creek	293.6	105.0	117	3.9	458	-10%
Big Walnut Creek at Snake Creek	303.6	115.0	118	4.0	466	-3%
Big Walnut Creek at Maiden Run	315.1	100.0	119	4.0	474	-16%
Big Walnut Creek at US 40	316.2	135.0	120	4.0	475	13%
Big Walnut Creek at USGS Gage						
03357500 (CR 875 South)	326.0	145.0	121	4.0	482	20%
Big Walnut Creek @ Confluence						
with Eel River	331.8	120.0	121	4.0	486	-1%

* Drainage areas at the upstream and downstream extent of the study area were determine using USGS's StreamStats tool. The intermediate locations' drainage areas were determined by linear interpolation.

** Approximate bankfull widths were determined by measuring the width of the channel defined by the 2012 IndianaMap DEM at the prescribed bankfull depth above the lowest elevations. This method is expected to result in slightly overestimated bankfull widths.

*** Predicted bankfull width and depth determined using the Central Till Plain Region regression equations published by the USGS in Regional Bankfull-Channel Dimensions of Non-Urban Wadeable Streams in Indiana.

Appendix 4:Reach-scale Assessment Data & Calculations

Stream Gage Analysis

PEAK_03357500

1 Program PeakFq U. S. GEOLOGICAL SURVEY Seq. 002. 000 Version 7.2 Annual peak flow frequency analysis Run Date / Time 3/28/2018 07/26/2018 15:47 --- PROCESSING OPTIONS ---Plot option = Graphics device Basin char output = None Print option = Yes Debug print = No Input peaks listing = Long Input peaks format = WATSTORE peak file Input files used: peaks (ascii) - R: \2014\14-0014.0000\Worksheets\Big Walnut Creek\PEAK_03357500. TXT specifications - R: \2014\14-0014.0000\Worksheets\Big Walnut Creek\PKFQWPSF.TMP Output file(s): main - R: \2014\14-0014.00000\Worksheets\Big Walnut Creek\PEAK 03357500. PRT * * * User responsible for assessment and interpretation of the following analysis * * * 1 Program PeakFq U. S. GEOLOGI CAL SURVEY Seq. 001. 001 Version 7.2 Annual peak flow frequency analysis Run Date / Time 07/26/2018 15:47 3/28/2018 Station - 03357500 BIG WALNUT CREEK NEAR REELSVILLE, IN TABLE 1 - INPUT DATA SUMMARY Number of peaks in record Peaks not used in analysis = 53 = 0 Gaged peaks in analysis 53 = Historic peaks in analysis 0 = Beginning Year 1950 = Ending Year = 2002 Historical Period Length = 53 Skew option **WEI GHTED** = Regional skew = -0.400 Standard error = 0.550 Mean Square error 0.303 = Gage base discharge = User supplied high outlier threshold = 0.0 User supplied PILF (LO) criterion = Plotting position parameter = 0.00 Type of analysis PILF (LO) Test Method EMA MGBT Perceptible Ranges: Start Year End Year Lower Bound Upper Bound 1950 2002 INF DEFAULT 0.0 Interval Data None Specified =

PEAK_03357500

TABLE 2 - DIAGNOSTIC MESSAGE AND PILF RESULTS

WCF002J-CALCS COMPLETED. RETURN CODE = 2 EMA002W-CONFIDENCE INTERVALS ARE NOT EXACT IF HISTORIC PERIOD > 0

MULTIPLE GRUBBS-BECK TEST RESULTS

MULTIPLE GRUBBS-BECK PILF THRESHOLD 3030. 0 NUMBER OF PILFS IDENTIFIED 2 CLASSIFICATION OF PILFS: NUMBER OF ZERO FLOWS 0 NUMBER OF CENSORED FLOWS 0 NUMBER OF GAGED PEAKS 2 GAGED PEAKS AND CORRESPONDING P-VALUES 1250. 0 (0.0162) 1820. 0 (0.0042)

Kendall's Tau Parameters

		TAU	P-VALUE	MEDI AN SLOPE	No. of PEAKS
GAGED	PEAKS	-0. 084	0. 378	-35. 208	53

1

Program PeakFq	U. S. GEOLOGI CAL SURVEY	Seq. 001. 002
Verši on 7.2 3/28/2018	Annual peak flow frequency analysis	Run Date / Time 07/26/2018 15:47

Station - 03357500 BIG WALNUT CREEK NEAR REELSVILLE, IN

TABLE 3 - ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

		LOGARI THMI C	
	MEAN	STANDARD DEVI ATI ON	SKEW
EMA WITHOUT REG SKEW EMA WITH REG SKEW	3. 9109 3. 9108	0. 2279 0. 2283	-0. 266 -0. 312

EMA ESTIMATE OF MSE OF SKEW WITHOUT REG SKEW0. 1150EMA ESTIMATE OF MSE OF SKEW W/GAGED PEAKS ONLY (AT-SITE)0. 1150

TABLE 4 - ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

ANNUAL	<- EMA ES	TIMATE ->	<- FOR EMA EST	IMATE WITH	REG SKEW ->
EXCEEDANCE	WITH	WI THOUT	LOG VARIANCE	<-CONFI DEN	CE LIMITS->
PROBABI LI TY	REG SKEW	REG SKEW	OF EST.	5% LOWER	95% UPPER
0. 9950	1804.	1850.	0. 0129	672.9	2560.0
			Page 2		

			PEAK_03357500		
0.9900	2129.	2171.	0. 0095	927.0	2886.0
0.9500	3282.	3309.	0.0040	2030. 0	4061.0
0.9000	4090.	4104.	0.0025	2905.0	4915.0
0.8000	5284.	5281.	0.0016	4195.0	6224.0
0. 6667	6646.	6627.	0.0013	5560. 0	7753.0
0.5000	8369.	8338.	0. 0011	7157.0	9723.0
0. 4292	9179.	9146.	0.0011	7883.0	10670.0
0. 2000	12750.	12740.	0. 0011	10990. 0	15040.0
0. 1000	15660.	15690.	0.0014	13410. 0	19150.0
0.0400	19270.	19420.	0. 0021	16190. 0	25360.0
0. 0200	21910.	22170.	0.0029	18000. 0	30730.0
0. 0100	24500.	24900.	0.0040	19570. 0	36770.0
0.0050	27040.	27600.	0.0053	20950.0	43580.0
0. 0020	30360.	31170.	0.0075	22510.0	53980.0

*Note: If Station Skew option is selected then EMA ESTIMATE WITH REG SKEW will display values for and be equal to EMA ESTIMATE WITHOUT REG SKEW.

1

Program PeakFq Version 7.2 3/28/2018	U.S. GEOLOGICAL SURVEY Annual peak flow frequency analysis	Seq.001.003 Run Date / Time 07/26/2018 15:47

Station - 03357500 BIG WALNUT CREEK NEAR REELSVILLE, IN

TABLE 5 - INPUT DATA LISTING

WATER	PEAK	PEAKFQ	FLOW INTERVALS (WHERE LOWER BOUND NOT = UPPER BOUND)
YEAR	VALUE	CODES	LOWER BOUND UPPER BOUND REMARKS
1950	15500. 0		
1951	6040.0		
1952	15700. 0		
1953	8500.0		
1954	1250.0		
1955	3030.0		
1956	9300.0		
1957	30700.0		
1958	13800.0		
1959	14200.0		
1960	16000. 0		
1961	18400.0		
1962	13400.0		
1963	19800.0		
1964	10900.0		
1965	6600.0		
1966	1820. 0		
1967	6120.0		
1968	15800.0		
1969	10300. 0		
1970	6340.0		
1971	8050.0		
1972	6650.0		
1973	7970. 0		
1974	5320.0		
1975	7360.0		
1976	3730.0		
1977	3070.0		
1978	7890.0		
1979	9340.0		
1980	6050.0		

1001	
1981	6060.0
1982	5640.0
1983	6670.0
1984	5610. 0
1985	7800.0
1986	9940.0
1987	8710.0
1988	6610.0
1989	9190.0
1990	10100.0
1991	13800.0
1992	5160 0
1993	9930 0
1994	11400 0
1995	6150 0
1996	8020 0
1997	9830 0
1998	8860 0
1999	10300.0
2000	3570 0
2000	7910 0
2001	10000 0
2002	10000.0

Explanation of peak discharge qualification codes

PeakFQ CODE	NWI S CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
– Mi	i nus-fl ag -8888. 0	ged discharge Not used in computation No discharge value given

- Minus-flagged water year -- Historic peak used in computation
- 1

Program Version 3/28/201	PeakFq 7.2 8	U.S. Annual pea	GEOLOGICAL SU ak flow frequer	IRVEY acy analysis	Seq.001.004 Run Date / Time 07/26/2018 15:47
	Station -	03357500	BIG WALNUT CRE	EEK NEAR REEL	SVILLE, IN
TABLE 6	- EMPIRICAL	FREQUENCY	CURVES HIRS	SCH-STEDI NGER	PLOTTING POSITIONS
WATER BOUND)	RANKED	EMA	FLOW INTERVA	LS (WHERE LC	WER BOUND NOT = UPPER
YÉAR	DI SCHARGE	ESTIMATE	LOWER BOUND	UPPER BOUND)
1957	30700.0	0.0184			
1963	19800.0	0.0370			
1961	18400.0	0.0555			
1960	16000.0	0.0740			
1968	15800.0	0.0925			
1952	15700. 0	0. 1110			

1950 1959 1958 1991 1962 1994 1969 1999 1990 2002 1986 1993 1997 1979 1956	$\begin{array}{c} 15500.\ 0\\ 14200.\ 0\\ 13800.\ 0\\ 13800.\ 0\\ 13400.\ 0\\ 11400.\ 0\\ 10900.\ 0\\ 10300.\ 0\\ 10300.\ 0\\ 10300.\ 0\\ 10000.\ 0\\ 9940.\ 0\\ 9930.\ 0\\ 9340.\ 0\\ 9340.\ 0\\ 9300.\ 0\end{array}$	0. 1296 0. 1481 0. 1851 0. 1666 0. 2037 0. 2222 0. 2407 0. 2777 0. 2592 0. 2963 0. 3148 0. 3333 0. 3518 0. 3703 0. 3889 0. 4074
1989 1998 1987 1953 1971 1996 1973 2001 1978 1985 1975 1983 1972 1988 1965 1970 1995 1967 1981	9190.0 8860.0 8710.0 8500.0 8050.0 8020.0 7970.0 7910.0 7890.0 7800.0 6670.0 6670.0 6650.0 6610.0 6640.0 6340.0 6150.0 6120.0 6060.0	$\begin{array}{c} 0.\ 4259\\ 0.\ 4444\\ 0.\ 4630\\ 0.\ 4815\\ 0.\ 5000\\ 0.\ 5185\\ 0.\ 5370\\ 0.\ 5556\\ 0.\ 5741\\ 0.\ 5926\\ 0.\ 6111\\ 0.\ 6297\\ 0.\ 6482\\ 0.\ 6667\\ 0.\ 6852\\ 0.\ 7037\\ 0.\ 7223\\ 0.\ 7408\\ 0.\ 7593\\ 0.\ 7493\\ 0.\ 7593\\ 0.\ 7793\\$
1980 1951 1982 1984 1974 1972 1976 2000 1977 1955 * 1966 * 1954	6050.0 6040.0 5640.0 5320.0 5160.0 3730.0 3570.0 3070.0 3030.0 1820.0 1250.0	0. 7778 0. 7963 0. 8149 0. 8334 0. 8519 0. 8704 0. 8890 0. 9075 0. 9260 0. 9445 0. 9630 0. 9816

* DENOTES PILF (LO)

1

Program PeakFq Version 7.2 3/28/2018	U. S. GEOLOGICAL SURVEY Annual peak flow frequency analysis	Seq.001.005 Run Date / Time 07/26/2018 15:47

Station - 03357500 BIG WALNUT CREEK NEAR REELSVILLE, IN

TABLE 7 - EMA REPRESENTATION OF DATA

<---- USER-ENTERED ----><-----

FINAL	>		FEAK_U	3337300		
WATER	< OBSER	VED><-	EMA	><-	PERCEPTI BLE	RANGES -><-
PERCEPTI YEAR	BLE RANGES - Q_LOWER	> Q_UPPER	Q_LOWER	Q_UPPER	LOWER	UPPER
LOWER 1950	ŪPPER 15500. 0				0.0	I NF
3030.0	I NF 6040_0	6040_0	6040 0	6040_0	0.0	INF
3030.0	I NF	15700 0	15700 0	15700 0	0.0	INE
3030.0	I NF	9500.0	9500.0	9500.0	0.0	
3030.0	8500.0 I NF	8500.0	8500.0	8500.0	0.0	
1954 3030. 0	1250. 0 I NF	1250.0	0.0	3030.0	0.0	INF
1955 3030. 0	3030. 0 I NF	3030. 0	3030.0	3030. 0	0.0	INF
1956 3030. 0	9300. 0 I NF	9300.0	9300.0	9300.0	0.0	INF
1957 3030. 0	30700. 0 I NF	30700.0	30700. 0	30700.0	0.0	INF
1958 3030_0	13800. 0 I NF	13800.0	13800. 0	13800.0	0.0	INF
1959	14200.0	14200.0	14200. 0	14200.0	0.0	INF
1960	16000. 0	16000.0	16000. 0	16000.0	0.0	INF
1961	18400. 0	18400. 0	18400. 0	18400.0	0.0	INF
1962	13400.0	13400. 0	13400. 0	13400.0	0.0	INF
3030. 0 1963	19800.0	19800. 0	19800. 0	19800. 0	0.0	INF
3030. 0 1964	I NF 10900.0	10900.0	10900. 0	10900.0	0.0	INF
3030. 0 1965	I NF 6600. 0	6600.0	6600.0	6600.0	0.0	INF
3030. 0 1966	I NF 1820. 0	1820. 0	0.0	3030. 0	0.0	INF
3030. 0 1967	I NF 6120. 0	6120.0	6120. 0	6120. 0	0.0	INF
3030. 0 1968	I NF 15800. 0	15800. 0	15800. 0	15800. 0	0.0	I NF
3030. 0 1969	I NF 10300. 0	10300. 0	10300. 0	10300. 0	0.0	INF
3030. 0 1970	I NF 6340. 0	6340.0	6340.0	6340.0	0.0	INF
3030. 0 1971	I NF 8050_0	8050 0	8050 0	8050 0	0 0	INF
3030.0	I NF 6650_0	6650 0	6650 0	6650 0	0.0	INF
3030.0	I NF	7970 0	7970 0	7970 0	0.0	INE
3030.0	I NF	F220 0	F220 0	F220 0	0.0	
3030.0	5320.0 I NF	5320.0	5320.0	5320.0	0.0	
3030.0	7360.0 INF	/360.0	/360.0	/360.0	0.0	
1976 3030. 0	3730.0 INF	3730.0	3730.0	3730.0	0.0	I NF
1977 3030. 0	3070. 0 I NF	3070. 0	3070. 0	3070.0	0.0	INF
1978 3030. 0	7890. 0 I NF	7890.0	7890. 0	7890.0	0.0	INF

PEAK_03357500

			PEAK_03	3357500		
1979	9340.0	9340.0	9340.0	9340.0	0.0	INF
3030.0					0.0	
3030 0	6050. U I NF	6050.0	6050.0	6050.0	0.0	
1981	6060 0	6060 0	6060 0	6060 0	0 0	INF
3030.0	INF	000010	000010	000010	0.0	
1982	5640.0	5640.0	5640.0	5640.0	0.0	I NF
3030.0	INF					
1983	6670.0	6670.0	6670.0	6670.0	0.0	INF
3030.0		E410 0	E410 0	E410 0	0.0	
3030 0		5010.0	5010.0	5610.0	0.0	
1985	7800 0	7800 0	7800 0	7800 0	0 0	INF
3030.0	INF				01.0	
1986	9940.0	9940.0	9940.0	9940.0	0.0	INF
3030.0	INF	0740 0	0740 0	0740 0		
1987	8/10.0	8/10.0	8/10.0	8/10.0	0.0	INF
3030.0		6610 0	6610 0	6610 0	0.0	
3030 0	I NF	0010.0	0010.0	0010.0	0.0	
1989	9190.0	9190.0	9190.0	9190.0	0.0	INF
3030.0	INF					
1990	10100. 0	10100.0	10100.0	10100. 0	0.0	INF
3030.0	INF	10000 0	10000 0	10000 0		
1991	13800.0	13800.0	13800.0	13800.0	0.0	INF
3030.0		5160 0	5160 0	5160 0	0.0	
3030 0	LNF	5100.0	5100.0	5100.0	0.0	I INI
1993	9930.0	9930.0	9930.0	9930.0	0.0	INF
3030. 0	INF					
1994	11400.0	11400.0	11400.0	11400.0	0.0	INF
3030.0		(150.0	(150.0	(150.0	0.0	
2020 0		6150.0	6150.0	6150.0	0.0	INF
1996	8020 0	8020 0	8020 0	8020 0	0 0	INF
3030.0	I NF	0020.0	0020.0	0020.0	0.0	1 111
1997	9830.0	9830.0	9830.0	9830.0	0.0	I NF
3030. 0	INF					
1998	8860.0	8860.0	8860.0	8860.0	0.0	INF
3030.0		10200 0	10200 0	10200 0	0.0	
3030 0	10300. U	10300.0	10300.0	10300.0	0.0	
2000	3570.0	3570.0	3570.0	3570.0	0.0	INF
3030.0	INF			007010	01.0	
2001	7910.0	7910.0	7910.0	7910. 0	0.0	INF
3030.0	INF	10000 0	10000 0	10000 0		
2002		10000.0	10000.0	10000.0	0.0	INF
3030. U 1						
•						

:	1
:	0
:	0
:	53
	:

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

PEAK_03357500 For the station below, the following records were ignored: FINISHED PROCESSING STATION: 03357500 USGS BIG WALNUT CREEK NEAR REELSVI

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

Bankfull Discharge Calculations

Worksheet 5-2. Computations of velocity and bankfull discharge using various methods (Rosgen and Silvey, 2005).

	Bankfull VELOCITY / DISCHA					GE Estir	nates		
Site	Big Walnut	t Creek			Location	Brazil, IN			
Date	e 4/14/17 Stream Type C4/5			Valley Ty	/pe	U-GL-TP			
Observers	BJM, JDF				HUC				
	INPUT	VARL	ABLES			OUTPU	T VARI	ABLES	
Bankfull (Cross-section	AREA	531.9	A _{bkf} (SqFt)	Bankfu	Ill Mean D	EPTH	3.87	D _{bkf} (Ft)
Ban	kfull WIDTH	I	137.5	$\mathbf{W}_{\mathbf{bkf}}$ (Ft)	Wette ~ 2 *	d PERIME * d _{bkf} + W _{bkf}	TER	140.00	W _{Pbkf} (Ft)
D	84 @ Riffle		22.6	Dia. (mm)	D84	mm / 304.	8 =	0.07	D84 (Ft)
Ban	kfull SLOPE	3	0.00063	S (Ft / Ft)	Hydra	aulic RADI A _{bkf} / W _{Pbkf}	IUS .	3.80	R (Ft)
Gravitat	ional Acceler	ation	32.2	g (Ft /Sec ²)	Relat R	tive Rough (ft)/D84(ft)	ness	51.240	
Dra	ainage AREA		316.4	DA (SqMi)	Sh	ear Velocit ı* =√gRS	ty .	0.2776	u* (Ft / Sec)
	ESTI	IOITAN	метно	DS		Banl VELO	kfull CITY	Bankfull DISCHARGE	
1. Friction Factor	1. Friction Relative $u = [2.83 + 5.66 \text{Log} \{ \text{R / D84 } \}]u*$				4	3.5	Ft / Sec	1847	CFS
2. Roughness roughness. (s Coefficient: Figs. 5-6, 5-7) u	a) Manniı = 1.4895*	ng's 'n' from fr R ^{2/3} *S ^{1/2} /n	iction factor n	r / relative = 0.025	7.8	Ft / Sec	4160	CFS
2. Roughnes b) Mannin Note: This equa boulder-domina	s Coefficient: g's 'n' from Jar ation is for application ated stream systems	rett (USG ns involving s ; i.e., for strea	u = 1.48 S): n = 0.39S teep, step-pool, hig m types A1, A2, A2	95* R^{2/3}*S^{1/2} ³⁸ R ¹⁶ n ch boundary rou 3, B1, B2, B3, C2	2/n a = ighness, cobble - 2 and E3.		Ft / Sec		CFS
2. Roughnes c) Mannin	ss Coefficient: ag's 'n' from Str	eam Type	u = 1.4 n =	895* R^{2/3}*S ¹ 0.025	^{1/2} /n	7.8	Ft / Sec	4160	CFS
3. Other Meth	ods, ie. Hydrauli	c Geometry	(Hey, Darcy-W	eisbach, Chez	y C, etc.)		Ft / Sec		CFS
3. Other Meth	ods, ie. Hydrauli	c Geometry	(Hey, Darcy-W	eisbach, Chez	y C, etc.)		Ft / Sec		CFS
4. Continuit Re	ty Equations: eturn Period for B	a) USG Sankfull Dis	S Gage: charge (Yr.) Q =	$\mathbf{u} = \mathbf{Q} / \mathbf{A}$	1.3		Ft / Sec	4200	CFS
4. Continuit	4. Continuity Equations: b) Regional Curves u = Q / A						Ft / Sec		CFS
Option 1. 1 Option 2. F e Option 3. F	Options for using the D84 term in the relative roughness relation (R/D84), when using estimation method 1. Option 1. For sand-bed channels: measure the "protrusion height" (h _{sd}) of sand dunes above channel bed elevations. Substitute an average sand dune protrusion height (h _{sd} in feet) for the D84 term in estimation method 1. Option 2. For boulder-dominated channels: measure several "protrusion heights" (h _{bo}) of boulders above channel bed elevations. Substitute an average boulder protrusion height (h _{bo} in feet) for the D84 term in estimation method 1. Option 3. For bedrock-dominated channels: measure several "protrusion heights" (h _{bo}) of rock separations/steps/ioints/unlifted								
si es	surfaces above channel bed elevations. Substitute an average bedrock protrusion height (h _{br} in feet) for the D84 term in estimation method 1.							erm in	

Flow Velocity Grids

Bankfull Velocity Grid w/flowlines

100-Year Velocity Grid w/flowlines

Scour and Sediment Competence Calculations

Scour and Sediment Competence Evaluation for Big Walnut Creek

Date:	10/16/2018
Project No.:	14-0014

General Scour:

Blodgett Method:

 z_t (mean) = $KD^{-0.115}$ $D = D_{50}$ $z_t (max) = KD^{-0.115}$ where: z_t (mean) = best fit curve, ft z_t (max) = enveloping curve, ft D₅₀ = median size of bed material, ft 1.42 for z_t mean K = 6.5 for z_t max K = D₅₀ (from site visit) = 4 mm D₅₀ (from site visit) = 0.013 ft z_t (mean) = 2.34 ft z_t (max) = 10.70 ft

Pemberton and Lara Method (Using Blench and Lacey Constants)

$z_t = KQ^a W^b D^b$	c
Q = Q _d	
$W = W_f$	
D = D ₅₀	
where:	
z _t =	maximum scour depth, ft
К =	coefficient (see table below)
Q _d =	design discharge, ft ³ /s
$W_{f} =$	flow widt at design discharge, ft

D ₅₀ =	median size of bed material, mm
a, b, c =	exponents (see table below)
Q _d =	6,800 cfs
W _f =	144.63 ft
D ₅₀ =	4 mm

Condition		Lace	ey			Ble	nch	
	К	а	b	С	K	а	b	С
Moderate bend	0.195	1/3	0	- 1/6	0.530	2/3	- 2/3	-0.1092
Severe bend	0.292	1/3	0	- 1/6	0.530	2/3	- 2/3	-0.1092

Moderate bei	nd, Lacey:	Moderate bend, Blench:				
z _t =	2.93 ft	z _t =	5.93 ft			
Severe bend,	Lacey:	Severe ben	d, Blench:			
z _t =	4.39 ft	z _t =	5.93 ft			

Bend Scour:

NEH654.09 Method:

 $z_b = y (y_{max}/y - 1)$

where:

y = average flow depth in the bend (ft) y_{max} = maximum flow depth in the bend (ft)

$$y = 5.06 \text{ ft}$$

 $y_{max}/y = 1.5 + 4.5 (W_i/Rc)$

where:

W_i = channel width at bend inflection point, ft Rc = bend radius of curvature, ft

W _i =	154.8 from aerial photograph
Rc =	680 from aerial photograph
y _{max} /y =	2.52 ft
z _b =	7.69 ft

			Flow Prob	ability	Sediment C	ompetence	Degradation Prior to Channel Armoring			
Bin Number	Min Flow	Max Flow	Frequency	Probability of Occurrence	Average Flow	Mobile	% of Riffle	Armor	Degradation	% of Riffle
	Rate	Rate		(%)	Rate	Sediment Size	Mobile	Particle Size	to Armor	Mobile
	(cfs)	(cfs)			(cfs)	(mm)	(%)	(mm)	(ft)	(%)
1	0	621	21587	86.29	172	1.377	27.22	1.50	0.01	29.83
2	620	1240	2084	8.33	856	8.203	60.25	5.84	0.05	60.00
3	1240	1860	588	2.35	1508	10.873	63.48	7.23	0.07	60.00
4	1860	2480	276	1.10	2134	13.229	64.00	8.39	0.08	60.49
5	2480	3100	140	0.56	2774	15.880	65.08	9.63	0.10	61.98
6	3100	3720	84	0.34	3420	18.663	72.88	10.89	0.11	63.50
7	3720	4340	63	0.25	4078	21.174	81.25	11.98	0.13	64.00
8	4340	4960	47	0.19	4625	23.492	86.95	15.92	0.17	64.07
9	4960	5580	42	0.17	5241	26.001	89.62	17.54	0.23	69.15
10	5580	6200	22	0.09	5952	28.806	92.60	19.36	0.33	75.18
11	6200	6820	22	0.09	6500	29.861	93.72	20.03	0.38	77.45
12	6820	7440	14	0.06	7023	30.560	94.47	20.48	0.42	78.95
13	7440	8060	7	0.03	7864	31.220	95.17	20.91	0.47	80.37
14	8060	8680	7	0.03	8414	31.537	95.51	21.11	0.49	81.04
15	8680	9300	12	0.05	9088	31.735	95.72	21.24	0.51	81.47
16	9300	9920	4	0.02	9634	32.496	96.04	21.73	0.58	82.67
17	9920	10540	3	0.01	10144	34.033	96.57	22.71	0.72	84.97
18	10540	11160	2	0.01	10900	36.265	97.31	24.14	0.92	87.64
19	11160	11780	2	0.01	11511	38.010	97.85	25.25	1.08	88.82
20	11780	12400	5	0.02	12051	39.553	98.32	26.24	1.22	89.87
21	12400	13020	1	0.00	13000	42.484	99.23	28.10	1.71	91.85
22	13020	13640	1	0.00	13300	43.412	99.51	28.69	1.87	92.48
23	13640	14260	1	0.00	13772	44.859	99.72	29.61	2.31	93.22
24	14260	14880	1	0.00	14500	47.069	99.78	31.00	3.21	94.10
25	14880	15500	0	0.00	15190	49.164	99.84	32.32	4.06	94.93
26	15500	16120	1	0.00	16000	51.625	99.91	33.88 5.06		95.90
27	16120	16740	0	0.00	16430	52.931	99.94	34.70	5.59	96.42
28	16740	17360	0	0.00	17050	54.814	100.00	35.89	6.36	97.17
29	17360	17980	0	0.00	17670	56.752	100.00	37.10	8.23	97.57
30	17980	18600	2	0.01	18369	58.943	100.00	38.48	10.44	97.99

Stream:	Big Walnu	t Creek	Si	tream Type:						
Location:	Brazil, IN Valley Type:									
Observers:	BJM, JDF Date: 4/17/17									
Enter required information										
4.00	D ₅₀	D ₅₀ Riffle bed material D ₅₀ (mm)								
1.25	D_50	Bar sample D ₅₀ (mm)								
0.15	D _{max}	Largest particle from bar sample (est particle from bar sample (ft) 45.0 (mm) 304.8 mm/ft							
0.00063	S	Existing bankfull water surface slo	pe (ft/ft)							
4.04	d	Existing bankfull mean depth (ft)								
1.65	γ_s	Submerged specific weight of sed	iment							
Select the	appropriat	e equation and calculate critic	al dimension	less shear	stress					
0.030	$D_{50}^{}/D_{50}^{^{}}$	Range: 3 – 7 Use E	EQUATION 1:	τ [*] = 0.083	4 (D ₅₀ /D	^ 50) ^{-0.872}				
	D _{max} /D ₅₀	Range: 1.3 – 3.0 Use E	inge: 1.3 – 3.0 Use EQUATION 2: $\tau^* = 0.0384 (D_{max}/D_{50})^{-0.887}$							
0.030	τ*	Bankfull Dimensionless Shear Stress EQUATION USED: Eq. 1								
Calculate	bankfull m	ean depth required for entrainr	nent of larges	st particle i	n bar samp	ole				
11.7	d Required bankfull mean depth (ft) $d = \frac{\tau * \gamma_s D_{max}}{S}$									
	Check:	Stable C Aggrading C I	Degrading		_					
Calculate sample	bankfull wa	ater surface slope required for	entrainment o	of largest p	particle in b	ar				
0.00182	S	Required bankfull water surface s	ope (ft/ft)	$S = \frac{\tau * \gamma}{\gamma}$	י _s D _{max} d					
	Check:	□ Stable □ Aggrading □ I	Degrading							
Sediment	competend	e using dimensional shear str	ess							
0.2	Bankfull shear stress $\tau = \gamma dS$ (lbs/ft ²) (substitute hydraulic radius, R, with mean depth, d)									
39.3	Moveable	particle size (mm) at bankfull shear	stress (Figure {	5-54)						
2.4	Predicted	Predicted shear stress required to initiate movement of D _{max} (mm) (Figure 5-54)								
7.7	Predicted	mean depth required to initiate move	ement of D _{max} (n	nm) d =	$=\frac{\tau}{\gamma S}$					
0.00508	Predicted	Predicted slope required to initiate movement of D_{max} (mm) $S = \frac{\tau}{\gamma d}$								

Worksheet 5-15. Sediment competence calculation form to assess bed stability.

Appendix 5: Triple Bottom Line & Cost Estimate Calculations

			SOCIAL					ENVIRONMENTAL							
	Cummulative Score (15)	Capital Cost	Lifecycle O&M Cost	Shared Funding	Score (5)	Widespread Benefit (# of properties)	Reduce Flooding Drainage Problems	Benefit to Public Health & Safety	Benefit to Quality of Life	Score (5)	Level of Protection for Threatened Features	Impact to Adjacent Stream Reaches	Restore/ Protect Floodplain Function	Improve/ Protect Stream Habitat	Score (5)
Alternative Name.	Weighting Factor=	0.45	0.20	0.35	1.00	0.25	0.25	0.25	0.25	1.00	0.40	0.30	0.20	0.10	1.00
Treatment Type, or	0=	> \$1000/ft	very high	none		0	none	none	none		added risk	significant (-)	no change	no change	
Other Project Metric	1=	>\$750/ft <\$1000/ft	high	100% Owner		1-10	limited	limited	limited		no change	minor (-)	limited	limited	
	2=	>\$500/ft <\$750/ft	mod-high	75% Owner	-	11-30	limited-mod	limited-mod	limited-mod		minimal	no change	limited-mod	limited-mod	-
	3=	>\$250/ft <\$500/ft	moderate	50% Owner		31-100	moderate	moderate	moderate		moderate	minor (+)	moderate	moderate	
	4=	>\$100/ft <\$250/ft	low-mod	75% Other	1	101-300	mod-high	mod-high	mod-high		high	moderate (+)	mod-high	mod-high	1
	5=	<\$100/ft	low	100% Other		300+	high	high	high		robust	significant (+)	high	high	
Toe Wood	7.1	4	4	0	2.6	0	0	4	1	1.3	5	2	1	4	3.2
A-Jacks	6.0	3	4	0	2.2	0	0	4	0	1.0	5	2	1	0	2.8
Gabion Wall	5.3	3	2	0	1.8	0	0	4	0	1.0	5	1	1	0	2.5

Opinion of Probably Cost for Big Walnut Creek FEH Mitigation Project Toe Wood & Overflow Improvements

Line	Description	Estimated Quantities	Units	Ur	nit Price		Estimated Cost (Rounded)
1	Demolition						
2	Strin & Stocknile Tonsoil	200	CY	\$	7	\$	1 000
3	Selective Tree Clearing, Grubbing, & Hauling	1	is	ŝ	5.000	ŝ	5,000
4			Estimated	Demo	lition Cost	\$	6,000
5	Channel Improvements					•	- ,
6	Mass Excavation	1.100	CY	\$	7	\$	8.000
7	Place & Compact Fill Material	1,100	CY	\$	7	\$	8.000
8	Install Toe Wood	350	LF	\$	76	\$	27.000
9	Install Soil Lifts	700	SF	\$	19	\$	14,000
10	Install Live Willow Stakes	700	EA	\$	3	\$	2,000
11	Topsoil Placement	2,000	SY	\$	2	\$	5,000
12	Finish Grading	2,200	SY	\$	1	\$	2,000
13	Seeding	2,200	SY	\$	2	\$	4,000
14	Install Erosion Control Blankets	2,000	SY	\$	3	\$	6,000
15		Estimated Ch	annel Imp	proven	nents Cost	\$	76,000
16	Overflow Improvements						
17	Finish Grading	5,000	SY	\$	1	\$	5,000
18	Seeding	5,000	SY	\$	2	\$	10,000
19	Install Erosion Control Blankets	4,500	SY	\$	3	\$	14,000
20		Estimated Ove	erflow Imp	provem	nents Cost	\$	29,000
21	Miscellaneous						
22	Dewatering	1	LS	\$	1,000	\$	1,000
23	Erosion and Sediment Control	1	LS	\$	1,000	\$	1,000
24	Construction Surveying	1	LS	\$	2,000	\$	2,000
25	Construction Mobilization/Demobilization	1	LS	\$	7,000	\$	7,000
26	Project Administration & Unforeseen Additional Costs (50%)	1	LS	\$	56,000	\$	56,000
27 28		Estir	mated Mis	cellan	eous Cost	\$	67,000
29		Tot	tal Consti	uctio	n Cost	\$	178,000
30							
31	Professional Services						
32	Topographic Site Survey	1	LS	\$	4,000	\$	4,000
33	Geotechnical Engineering Investigation	1	LS	\$	4,000	\$	4,000
34	Engineering Design	1	LS	\$	54,000	\$	54,000
35	Construction Observation	1	LS	\$	15,000	\$	15,000
36 31		Estimated F	Profession	al Serv	vices Cost	\$	77,000
32		Estimated -	Total Cos	t for F	Project	\$	255,000
		u				Ψ	

Notes and Assumptions

1 All costs are estimates based on the engineer's knowledge of common construction methods and materials. Christopher B. Burke Engineering does not guarantee that the actual bid price will not vary from the costs used with this estimate.

- 2 All costs are in 2018 dollars.
- 3 Estimated costs have been rounded.
- 4 This estimate does not include unforeseen costs increases that may result from shortages in fuel and materials as a result of a natural or man-made disaster.
- 5 Costs have been estimated without the benefit of survey data, utility coordination, or design. This estimate is intended for planning level consideration, and should only be used for such purposes.
- 6 This estimate does not include easement, right-of-way, or land acquisition costs that may be necessary to construct the proposed alternative.
- 7 This estimate does not include the cost of environmental mitigation, which may be necessary as a result of project impacts